

Bebop to the Boolean Boogie

This page intentionally left blank

Bebop to the Boolean Boogie
An Unconventional Guide

to Electronics

Third Edition

Clive “Max” Maxfi eld

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (�44) 1865 843830, fax: (�44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://www.elsevier.com), by selecting “Support &
Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written,
Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-85617-507-4

For information on all Newnes publications,
visit our web site at: www.books.elsevier.com

08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Printed in Canada.

08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Printed in Canada.

��

This book is dedicated to my Auntie Barbara, whose assiduous scrubbing in my younger years has
left me the proud owner of the cleanest pair of knees in the known universe !

This page intentionally left blank

vii

ABOUT THE AUTHOR .. xvii

FOREWORD ... xix

ABOUT THIS BOOK ... xxi

ACKNOWLEDGMENTS ..xxv

SECTION 1 ● Fundamentals

CHAPTER 1 Analog Versus Digital ... 3
 It Was a Dark and Stormy Night 3

 Analog Versus Digital Views of the World ..4

 Multi-Value Digital Systems ... 5

 Experiments with Bricks ..6

CHAPTER 2 Atoms, Molecules, and Crystals .. 11
 Protons, Neutrons, and Electrons..11

 Quantum Levels and Electron Shells ... 13

 Making Molecules ... 13

 Crystals and Other Structures ... 15

CHAPTER 3 Conductors, Insulators, and Other Stuff 17
 Conductors and Insulators .. 17

 Voltage, Current, and Resistance..18

 Resistance and Resistors ..19

 Capacitance and Capacitors ... 21

 Inductance and Inductors ... 23

 Memristance and Memristors ... 28

 Impedance and Reactance... 28

 Admittance, Conductance, and Susceptance 29

 Unit Qualifi ers ... 30

CHAPTER 4 Semiconductors (Diodes and Transistors) 33
 Herding Wild Electrons ..33

 The Electromechanical Relay ...33

 The First Vacuum Tubes .. 35

 Semiconductors .. 36

 Semiconductor Diodes ..37

Contents

Contentsviii

 Bipolar Junction Transistors (BJTs).. 39

 Metal-Oxide Semiconductor Field-Effect Transistors

 (MOSFETs) ..41

 The Transistor as a Switch .. 43

 Gallium Arsenide Semiconductors ...44

 Light-Emitting Diodes (LEDs) .. 45

 Organic LEDs (OLEDs) ..46

 Active Versus Passive and Electric Versus Electronic 47

CHAPTER 5 Primitive Logic Functions ... 49
 Switch Representations of AND and OR Functions49

 FALSE and TRUE Versus OPEN and CLOSED 50

 BUF and NOT Functions ... 51

 “Connect the NOTs” .. 52

 AND, OR, and XOR Functions .. 52

 NAND, NOR, and XNOR Functions ... 53

 Not a Lot .. 55

 Functions Versus Gates ... 56

CHAPTER 6 Using Transistors to Build Logic Gates 57
 NMOS, PMOS, and CMOS ...57

 Using 0s and 1s Instead of Fs and Ts ...57

 NOT and BUF Gates ... 58

 NAND and AND Gates ..60

 NOR and OR Gates ...61

 XNOR and XOR Gates .. 62

 XNOR and XOR Gates: Pass-Transistor

 Implementations ... 63

 Pass-Transistor Logic ... 65

CHAPTER 7 Alternative Number Systems ..67
 Fingers, Toes, and Pebbles ... 67

 Bones with Notches .. 67

 Tally Sticks: The Hidden Dangers ..68

 The Abacus .. 69

 Roman Numerals .. 69

 Decimal (Base-10) ... 70

 Duo-Decimal (Base-12) ... 71

 Sexagesimal (Base-60) ..73

 The Concepts of Zero and Negative Numbers 74

 Vigesimal (Base-20) ... 76

Contents ix

 Jobs Abound for Time-Travelers ... 76

 Quinary (Base Five) ...77

 Binary (Base-2) .. 78

 Octal (Base-8) and Hexadecimal (Base-16)80

 Way Back in the Mists of Time .. 82

 Representing Numbers Using Powers ... 82

 Lucky and Unlucky Numbers ...84

 Tertiary Logic .. 85

CHAPTER 8 Binary Arithmetic ...87
 Before We Start 87

 Unsigned Binary Numbers ... 87

 Adding Unsigned Binary Numbers ...88

 Nines’ and Ten’s Complements ...89

 Subtracting Unsigned Binary Numbers ...91

 Sign-Magnitude Binary Numbers .. 93

 Signed Binary Numbers ..94

 Adding Signed Binary Numbers ... 95

 Subtracting Signed Binary Numbers .. 96

 Binary Multiplication ... 97

 Binary Division ..98

CHAPTER 9 Boolean Algebra ...99
 Cabbages, Parrots, and Buckets of Burning Oil 99

 Primitive Logic Functions ..100

 Combining a Single Variable with Logic 0 or Logic 1 102

 The Idempotent Rules .. 102

 The Complementary Rules ... 102

 The Involution Rule .. 103

 The Commutative Rules ...104

 The Associative Rules ...104

 Precedence of Operators ... 105

 The First Distributive Rule... 105

 The Second Distributive Rule ... 105

 The Simplifi cation Rules ...106

 DeMorgan Transformations ..106

 Minterms and Maxterms ... 112

 Sum-of-Products and Product-of-Sums .. 112

 Canonical Forms ..114

 An Interesting Conundrum ..114

Contentsx

CHAPTER 10 Karnaugh Maps ..117
 The Tree of Porphyry ... 117

 John Venn and his Venn Diagrams ... 117

 Allan Marquand and Lewis Carroll .. 117

 Maurice Karnaugh and Karnaugh Maps ..118

 Minimization Using Karnaugh Maps ... 119

 Grouping Minterms .. 120

 Incompletely Specifi ed Functions .. 122

 Populating Maps Using 0s Versus 1s ...123

CHAPTER 11 Slightly More Complex Functions.................................. 125
 First Gather a Bucket of Logic Gates .. 125

 Scalar Versus Vector Notation ... 125

 Equality Comparators ... 126

 Multiplexers ..127

 Decoders .. 129

 Tri-State Functions ... 130

 Combinational Versus Sequential Functions132

 RS Latch (NOR Implementation) ..132

 RS Latch (NAND Implementation) ...137

 D-Type Latches .. 138

 D-Type Flip-fl ops ... 139

 Implementing a D-Type Flip-fl op ... 142

 JK and T Flip-fl ops ... 143

 Shift Registers ..144

 Counters ... 146

 Setup and Hold Times ...148

 Brick by Brick .. 149

CHAPTER 12 State Machines ..151
 “Is That a Gizmo in Your Pocket, Or . . .” .. 151

 State Diagrams ... 152

 State Tables ...153

 State Machines ... 154

 State Assignment ...155

 Don’t Care States, Unused States, and Latch-Up Conditions 158

CHAPTER 13 Analog-to-Digital and Vice Versa 161
 Setting the Scene ... 161

 Analog-to-Digital ... 162

 Digital-to-Analog ... 164

 DSP Versus DSP.. 165

Contents xi

 Analog Signal Processing (ASP) ... 165

 Digital Signal Processing (DSP) .. 166

 DSP Examples .. 167

 What Implements the Digital Signal Processing? 167

SECTION 2 ● Components and Processes

CHAPTER 14 Integrated Circuits (ICs) ... 173
 The First Integrated Circuits ..173

 An Overview of the Fabrication Process ..175

 A Slightly More Detailed Look at the Fabrication Process 176

 An Introduction to the Packaging Process181

 Integrated Circuits Versus Discrete Components 185

 Different Types of ICs ... 186

 TTL, ECL, and CMOS .. 187

 Core Supply Voltages ... 187

 Equivalent Gates .. 188

 Device Geometries .. 188

 What Comes After Optical Lithography? ...190

 How Many Transistors? .. 192

 Moore’s Law .. 192

CHAPTER 15 Memory ICs ... 193
 RAMs and ROMs .. 193

 Cells, Words, and Arrays ... 195

 Addressing a Word in Memory .. 196

 Kilo, Mega, Giga, Tera, Etc. .. 196

 Bits and Bytes ... 197

 ROM Control Decoding... 197

 RAM with Separate Data In and Data Out Busses 199

 RAM with Single Bidirectional Bus ...200

 Increasing Width and Depth .. 201

 Mask-Programmed ROMs .. 202

 PROMs .. 203

 EPROMs ... 205

 EEPROMs/E2PROMs ... 207

 FLASH ... 207

 SRAMs and DRAMs ... 208

 SDRAMs .. 208

 DDR, DDR2, DDR3, QDR, RAMBUS, Etc. 210

 SIMMs, DIMMs, and RIMMs.. 210

Contentsxii

 ECC Memory ... 211

 MRAMs .. 211

 nvRAMs, FRAMs, PRAMs, RRAMs, CBRAMs, SONOS, Etc. 211

CHAPTER 16 Programmable ICs .. 213
 A Simple Programmable Function ..213

 Fusible-Link Technologies ... 214

 Antifuse Technologies .. 215

 EPROM, E2PROM, FLASH, and SRAM Technologies217

 The First Programmable Logic Devices (PLDs)217

 PROMs ... 218

 PLAs .. 221

 PALs and GALs ..223

 Additional Programmable Options ... 224

 Introducing CPLDs ... 224

 Introducing FPGAs ..227

 Alternative FPGA Architectures ..229

 Alternative FPGA Confi guration Technologies232

 Mixed-Signal FPGAs, CSSPs, and233

 Summary ..233

CHAPTER 17 Application-Specifi c Integrated Circuits (ASICs) 235
 Introducing ASICs ..235

 Full Custom Devices ..236

 Gate Arrays ..236

 High-Level View of the Gate Array Design Flow238

 Standard Cell Devices .. 240

 High-Level View of the Standard Cell Design Flow 241

 1T Versus 6 T SRAM ... 241

 Structured ASICs .. 242

 Input/Output (I/O) Cells and Pads ... 245

 ASICs Versus ASSPs ... 246

 Who Are All the Players? .. 246

 Summary ... 248

CHAPTER 18 Printed Circuit Boards (PCBs).. 251
 Not Much Fun ... 251

 The First Circuit Boards ... 251

 PCBs and PWBs ...252

 RoHS and Lead-Free Solder ..252

 Subtractive Processes ..253

Contents xiii

 Additive Processes ..255

 Single-Sided Boards ...257

 Lead Through-Hole (LTH) ...259

 Wave Soldering ..259

 Surface Mount Technology (SMT) ... 260

 Double-Sided Boards ..262

 Holes Versus Vias ... 264

 Multilayer Boards ...265

 Through-Hole, Blind, and Buried Vias .. 266

 Power and Ground Planes ...267

 High Density Interconnect (HDI) and Microvia Technologies ... 270

 Backplanes and Motherboards ..271

 Conductive Ink Technology ...272

 Chip-on-Board (COB) ...273

 Flexible Printed Circuits (FPCs) ...274

CHAPTER 19 Hybrids ..277
 The Offspring Resulting from Crossbreeding 277

 Hybrid Substrates .. 277

 The Thick-Film Process ..278

 Creating Tracks ...279

 Creating Resistors... 280

 Laser Trimming ... 281

 Creating Capacitors and Inductors.. 282

 Double-sided Thick-Film Hybrids ..283

 Subtractive Thick-Film Technology ..283

 The Thin-Film Process ..283

 Laser Trimming ...285

 The Assembly Process .. 286

 Attaching the Die... 286

 Wire Bonds ..287

 Tape-Automated Bonding .. 288

 Flipped-Chip Techniques... 289

 Advantages of Using Bare Die ... 290

 The Packaging Process ... 290

CHAPTER 20 Advanced Packaging Techniques293
 Sliding Down the Rabbit Hole ...293

 Wire Bonds Versus Flip-Chip ..293

 Wire Bonding and Flip-Chip .. 294

Contentsxiv

 Chip-Scale Package (CSP) Technology .. 294

 3-D Die Stacking ..295

 System-in-Package (SiP), PiP, and PoP .. 296

 A Positive Plethora of Substrates ...297

 An Example SiP Based on Cofi red Ceramics.................................. 298

 Low-Fired Cofi red Ceramics .. 301

 Assembly and Packaging ... 301

 Pin Grid Arrays ... 302

 Pad, Ball, and Column Grid Arrays .. 302

 Fuzz-Buttons ... 304

 Populating the Die .. 304

 The Mind Boggles ... 305

CHAPTER 21 Alternative and Future Technologies307
 A Smorgasbord of Technologies ..307

 Reconfi gurable Computing ..307

 Elemental Computing Arrays (ECAs) .. 310

 Optical Interconnect .. 314

 Fiber-Optic Interconnect ... 314

 It Pays to Keep Your Eyes Open ...317

 Free-Space Interconnect ..317

 Guided-Wave Interconnect .. 318

 Optical Memories .. 320

 Protein Switches and Memories ...321

 Electromagnetic Transistor Fabrication ..324

 Heterojunction Transistors ..325

 Buckyballs and Nanotubes ..328

 Diamond Substrates...331

 Chemical Vapor Deposition...331

 Chemical Vapor Infi ltration ..332

 Ubiquitous Laser Beams ..332

 The Maverick Inventor ..333

 The Requirement for Single-Crystal Diamond333

 Conductive Adhesives ..334

 Superconductors ..335

 Nanotechnology ... 337

 Back to the Water Molecule .. 337

 Imagine a Soup ...339

 Once Again, the Mind Boggles ... 341

 Summary ..342

Contents xv

SECTION 3 ● Design Tools and Stuff

CHAPTER 22 General Concepts ..345
 Stuff, More Stuff, and Yet More Stuff ..345

 The Origins of EDA ..345

 Computer-Aided Design (CAD) ... 346

 Computer-Aided Engineering (CAE) .. 346

 Designers Versus Engineers..347

 Electronic Design Automation (EDA) ...347

 Automation ..347

 Embedded Systems ... 348

 Programming Versus Hardware Design Languages 349

 Netlists ... 350

 Transistor-Level .. 350

 Gate-Level ..351

 Component-Level..351

 Different Levels of Abstraction ...351

 Transistor-Level ...352

 Switch-Level ...352

 Gate-Level ...353

 Structural ...353

 Functional (Boolean, RTL) ..353

 Behavioral ..354

 Algorithmic ...354

 Different Languages ...354

 Programming Languages ...354

 Scripting Languages..355

 Hardware Description Languages (Digital)355

 Hardware Description Languages (Analog)358

 Verifi cation Languages (General) ..358

 Verifi cation Languages (Formal) ...358

 Electronic System Level (ESL) ..359

CHAPTER 23 Design and Verifi cation Tools .. 361
 Weasel Words ... 361

 Design Capture ... 361

 Transistor-Level and Gate-Level Netlists.................................. 361

 Schematic Capture ...362

 Higher Levels of Abstraction ..363

 Graphical Design Entry Lives On ..363

Contentsxvi

 Functional Verifi cation (Simulation) .. 364

 Formal Verifi cation ..365

 Logic Synthesis ..366

 Layout (Place-and-Route) ..367

 Parasitic Extraction ...367

 Timing Analysis .. 368

 Static Timing Analysis (STA) ... 368

 Statistical Static Timing Analysis (SSTA)369

 Design for Manufacturability (DFT) ..370

 And So Much More371

 Schematic Synthesis ..371

 Analog Synthesis ..371

 RF/Microwave Design Tools ...372

 Hardware Simulation Acceleration and Emulation372

 Mixed-Signal Simulation .. 373

 Physical Verifi cation (DRC, ERC, LVS)....................................... 373

 Signal Integrity (SI) Analysis ...374

 Thermal Analysis ..374

 Power Analysis ...374

 Electromagnetic Interference and Compliance

 (EMI and EMC) ..374

 SCAN, BIST, JTAG, etc. .. 375

 Automatic Test Pattern Generation (ATPG)376

 Fault Simulation ...376

 Turn That Frown Upside Down...376

APPENDIX A Assertion-Level Logic .. 377
APPENDIX B Positive Versus Negative Logic383
APPENDIX C Reed-Müller Logic ... 389
APPENDIX D Gray Codes ..393
APPENDIX E Linear Feedback Shift Registers (LFSRs) 407
APPENDIX F Pass-Transistor Logic ..423
APPENDIX G More on Semiconductors ...427
APPENDIX H Rounding Algorithms 101 ..435
APPENDIX I An Interesting Conundrum ...455
APPENDIX J A No-Holds Barred Seafood Gumbo 459
 Glossary ... 465
 Index .. 525

xvii

 Clive “ Max ” Maxfi eld is six feet tall, outrageously handsome, English and proud
of it. In addition to being a hero, a trendsetter, and a leader of fashion, he is
widely regarded as an expert in all aspects of electronics (at least by his mother).

 After receiving his BS in Control Engineering in 1980 from Sheffi eld Polytechnic
(now Sheffi eld Hallam University) in England, Max began his career as a
designer of central processing units for mainframe computers. In those days of
yore, Max and the rest of the team were designing silicon chips using pencil
and paper, because they didn’t have access to any computer-aided tools. Over
the following years, Max meandered his way through most of the tools used to
design chips, circuit boards, and electronic systems. These tools are now gath-
ered under the umbrella name of Electronic Design Automation (EDA).

 To cut a long story short, Max now fi nds himself President of TechBites
Interactive (http://www.techbites.com/index.html). A marketing consultancy,
TechBites specializes in communicating the value of technical products and
services to nontechnical audiences through such mediums as websites, adver-
tising, technical documents, brochures, collaterals, and multimedia.

 In his spare time (Ha!), Max is the editor of the Programmable Logic
DesignLine site (http://www.pldesignline.com/) and the executive editor of the
iDesign portion of Chip Design Magazine (http://www.chipdesignmag.com/).
Max is also the coeditor and copublisher of the web-delivered electronics and
computing hobbyist magazine EPE Online (http://www.epemag3.com/).

 In addition to numerous technical articles and papers appearing in magazines and
at conferences around the world, Max is also the author and coauthor of a num-
ber of books, including Designus Maximus Unleashed (Banned in Alabama), Bebop
BYTES Back (An Unconventional Guide to Computers), EDA: Where Electronics
Begins, The Design Warrior’s Guide to FPGAs, and How Computers Do Math (which
features the pedagogical and phantasmagorical virtual DIY Calculator).

 On the off-chance that you’re still not impressed, Max was once referred to as
an “ industry notable ” and a “ semiconductor design expert ” by someone famous
who wasn’t prompted, coerced, or remunerated in any way!

About the Author

This page intentionally left blank

xix

 My fi rst exposure to the unique writing style of Clive (call me “ Max ”) Maxfi eld was
a magazine article that he cowrote with an associate. The article was technically
brilliant (he paid me to say that) and very informative, but it was the short biogra-
phy at the end of the piece that I enjoyed the most. I say enjoyed the most because,
as you will soon learn, Max does not necessarily follow the herd or dance to the
same drummer as the masses. Trade journals have a reputation for being informa-
tive and educational, but also as dry as West Texas real estate.

 Anyway, Max’s personally submitted biography not only included a message
from his mom, but also made mention of the fact that he (Max) is taller than
his coauthor, who just happened to be his boss at the time. Now to some peo-
ple this may seem irrelevant, but to our readers (and Max’s boss), these kind
of things—trivial as they may seem to the uninitiated—are what helps us to
maintain our off-grid sense of the world. Max has become, for better or worse,
a part of that alternate life experience.

 So now it’s a couple of years later, and Max has asked me to write a few words
by way of introduction to his magnum opus. Personally, I think that the title of
this tome alone (hmmm, a movie?) should provide some input as to what you
can expect. But, for those who require a bit more: be forewarned, dear reader,
you will probably learn far more than you could hope to expect from Bebop
to the Boolean Boogie, just because of the unique approach Max has to techni-
cal material. The author will guide you from the basics through a minefi eld of
potentially boring theoretical mish-mash, to a Nirvana of understanding. You
will not suffer that fate familiar to every reader: rereading paragraphs over and
over wondering what in the world the author was trying to say. For a limey,
Max shoots amazingly well and from the hip, but in a way that will keep you
interested and amused. If you are not vigilant, you may not only learn some-
thing, but you may even enjoy the process. The only further advice I can give is
to “expect the unexpected. ”

 —Pete Waddell, Publisher, Printed Circuit Design

 Literary genius (so says his mom), and taller than Max by 11⁄8 inches

Foreword

This page intentionally left blank

xxi

About this Book

 NOTE FROM THE AUTHOR WITH REGARD TO THE SECOND
EDITION

 I awoke one Saturday morning in July 1992 with the idea that it would be “ sort of cool ” to

stroll into a bookshop and see something I’d written on the shelves. So with no clue as to

what this would actually entail, I started penning the fi rst edition of Bebop to the Boolean

Boogie , which eventually hit the streets in 1995.

 Much to my surprise, Bebop quickly found a following at Yale University as part of an

introductory electronics course (it was subsequently adopted by a number of other

universities around the world), and it soon became required reading for sales and

marketing groups at a number of high-tech companies in Silicon Valley and across the

USA.

 Time passed (as is its wont), and suddenly it was seven years later and we were in a

new millennium! Over these last few years, electronics and computing technology has

progressed in leaps and bounds. In 1995, for example, an integrated circuit containing

around 14 million transistors was considered to be relatively state-of-the-art. By the

summer of 2002, however, Intel had announced a test chip containing 330 million

transistors!

 And it’s not just improvements to existing technologies, because over the last few years

entirely new materials like carbon nanotubes have made their appearance on the scene.

Therefore, by popular demand, I’ve completely revamped Bebop from cover to cover,

revising the nitty-gritty details to refl ect the latest in technology, and adding a myriad of

new facts, topics, and nuggets of trivia. Enjoy!

 NOTE FROM THE AUTHOR WITH REGARD TO THE THIRD
EDITION
 Give me strength! Where does the time go? It’s now 2008 as I write this note—16 years

after I started work on the fi rst edition of this tome. As you may have noticed, things are

racing along in technology space (where no one can hear you scream). Looking back at

my notes to the second edition, I see mention of Intel introducing a chip containing “ 330

million transistors! ” Observe the exclamation mark. As you can see, I was quite excited

About this Bookxxii

 This outrageously interesting book has two namesakes: Bebop, a jazz style
known for its fast tempos and agitated rhythms, and Boolean Algebra, a branch
of mathematics that is the mainstay of the electronics designer’s tool chest.
Bebop to the Boolean Boogie meets the expectations set by both, because it leaps
from topic to topic with the agility of a mountain goat, and it will become
your key reference guide to understanding the weird and wonderful world of
electronics.

 Bebop to the Boolean Boogie provides a wide-ranging but comprehensive intro-
duction to the electronics arena, roaming through the fundamental concepts,
and rampaging through electronic components and the processes used to cre-
ate them. As a bonus, nuggets of trivia are included with which you can amaze
your family and friends; for example, Greenland Eskimos have a base-20 num-
ber system, because they count using both fi ngers and toes.

 Section 1: Fundamentals starts by considering the differences between analog and
digital views of the world. We then proceed rapidly through atomic theory and
semiconductor switches to primitive logic functions and their electronic imple-
mentations. The concepts of alternative numbering systems are presented, along
with binary arithmetic, Boolean algebra, and Karnaugh map representations.

about this. Well, I happen to know that, in just a few days as I pen these words—on

May 19, 2008—Altera will be introducing a new family of FPGAs (see Chapter 16:

Programmable ICs) at the 40-nm technology node, and the largest of these devices

will comprise 2.5 billion transistors!!! (I know, multiple exclamation marks are the sign

of a deranged mind, but I’ve reached the age where I no longer care.)

 Similarly, in 2003 I was thrilled by the possibilities for nanotubes. These are still jolly

exciting, but the latest “buzz on the street ” pertains to a newly isolated form of carbon

called graphene , which may offer a myriad of properties that are of interest to the

designers of integrated circuits.

 On the other side of the coin, some technologies that were once in vogue have simply

faded away with barely a whimper, while others that initially seemed to be “red hot ”

never actually came to fruition and disappeared without trace. But we need not

become despondent, because new ideas and technologies are popping up all the

time.

 I tell you, things just keep on getting better and better and more and more interesting,

and I for one can’t wait to see what’s hiding just around the corner. So, until next time

(and I have no doubt that there will be a next time), I hope all goes well with you and

yours and that you enjoy reading this book as much as I’ve enjoyed writing it.

About this Book xxiii

Finally, the construction of more complex logical functions is considered,
along with their applications.

 Section 2: Components and Processes is where we consider the components from
which electronic systems are formed and the processes required to manufac-
turer them. The construction of integrated circuits (“silicon chips ”) is examined
in some detail, followed by introductions to memory devices, programma-
ble devices, and application-specifi c devices. The discussion continues with
hybrids, printed circuit boards, and a variety of advanced packaging techniques.
We close with an overview of some alternative and future technologies.

 Section 3: Design Tools and Stuff, which is new to the third edition, is where we
discuss how electronics engineers actually go about designing and implement-
ing components, circuit boards, and electronic systems, including the tools
they use and the way in which these tools play together.

 This book is of particular interest to electronics students. Additionally, by clari-
fying the techno-speech used by engineers, the book is of value to anyone who
is interested in understanding more about electronics but lacks a strong techni-
cal background.

 Except where such interpretation is inconsistent with the context, the singu-
lar shall be deemed to include the plural, the masculine shall be deemed to
include the feminine, and the spelling (and the punctuation) shall be deemed
to be correct!

This page intentionally left blank

xxv

 Special thanks for technical advice go to Alvin Brown, Alon Kfi r, Don Kuk, and
Preston Jett, the closest thing to living encyclopedic reference manuals one
could hope to meet. (The reason that the text contains so few bibliographic ref-
erences is due to the fact that I never had to look anything up—I simply asked
the relevant expert for the defi nitive answer.)

 I would also like to thank Dave Thompson from Mentor Graphics, Tamara
Snowden and Robert Bielby from Xilinx, Stuart Hamilton from NEC, Richard
Gordon and Gary Smith from Gartner Dataquest (Gary is now with Gary
Smith EDA at http://www.garysmitheda.com /), Richard Goering from EE Times
(Richard is now with SCD Source at http://www.scdsource.com /), high-speed
design expert Lee Ritchey from Speeding Edge, and circuit board technologist
Happy Holden from Westwood Associates, all of whom helped out with criti-
cal nuggets of information just when I needed them the most.

 Actually, when I come to think about it, over the years I’ve been fortunate
enough to come into contact with an incredible number of people spanning
all areas of electronics and computing, and I’ve learned something new and
interesting from every one of them, so my thanks also go out to all of these
folks (you know who you are).

 —Clive “ Max ” Maxfi eld, May 2008

Acknowledgments

This page intentionally left blank

 SECTION 1 SECTION 1

 Fundamentals

This page intentionally left blank

3

 IT WAS A DARK AND STORMY NIGHT . . .
 Ah, the classic opening: “ It was a dark and stormy night … ” which was made
famous by the Peanuts cartoon character, Snoopy (see Box). I always wanted to
start a book this way myself, and this is as good a time as any …

 CHAPTER 1 CHAPTER 1

 Analog Versus Digital

 The phrase “ It was a dark and stormy night … ” is actually the opening sentence of an

1830 book by the British author Edward George Earl Bulwer-Lytton . A legend in his own

lunchtime, Bulwer-Lytton became renowned for penning exceptionally bad prose, of which

the opening to his book Paul Clifford set the standard for others to follow.

 For your delectation and delight, the complete opening sentence of Bulwer-Lytton’s

masterpiece was: “ It was a dark and stormy night; the rain fell in torrents—except at

occasional intervals, when it was checked by a violent gust of wind which swept up the

streets (for it is in London that our scene lies), rattling along the housetops, and fi ercely

agitating the scanty fl ame of the lamps that struggled against the darkness . ”

 Actually, Bulwer-Lytton (1803–1873) was a very popular writer in his day, coining such

phrases as “ the great unwashed , ” “ pursuit of the almighty dollar , ” and “ the pen is mightier

than the sword. ” However, he may well have fallen into obscurity along with so many of

his contemporaries if it were not for the annual Bulwer-Lytton Fiction Contest sponsored

by the English Department of San Jose State University.

 “ It was a dark and stormy night … ” is now generally understood to represent an

extravagantly fl orid style with redundancies and run-on sentences, and the Bulwer-Lytton

Fiction Contest was formed to “ celebrate ” the worst extremes of this general style of

writing. Over the years, the contest has gained international attention and now attracts

10,000 or more entries a year. In fact, I myself have submitted an entry for the 2008

competition, but all I’ve heard so far is an e-mail message saying that I can be assured

that my offering “ will be given the consideration it deserves . ” On the off-chance that you’re

interested, I’ve included a copy of my humble submission at the end of this chapter.

SECTION 1 Fundamentals4

 ANALOG VERSUS DIGITAL VIEWS OF THE WORLD
 Now sit up and pay attention because this bit is important. Electronic engi-
neers split their world into two views, called analog 1 and digital, and it’s neces-
sary to understand the difference between these views to make much sense out
of the rest of this book.

 At this point, even though we’ve barely dipped our toes in the water, I can
imagine you rolling your eyes saying to yourself: “Good grief, I already know all
of this stuff ! ” Well, I’m hoping that by the time we reach the end of this fi rst
chapter you’ll be thinking: “Hmmm, maybe Max is not as daft as he looks (but,
there again, who could be?) I actually learned something here. I can’t wait to read the
next chapter. And just as soon as I get a spare moment I will rush out and buy some of
Max’s other books ! ”

 In the context of electronics, an analog device or system is one that uses con-
tinuously variable signals to represent information for input, processing, out-
put, and so forth. A very simple example of an analog system would be a light
controlled by a dimmer switch.

 By comparison, a digital device or system is one that uses discrete (that is,
discontinuous) values to represent information for input, processing, stor-
age, output, and so forth. A digital quantity is one that can be represented
as being in one of a fi nite number of states, such as 0 and 1, ON and OFF , UP and
DOWN, etc. As an example of a simple digital system, consider a light switch in
a house. When the switch is UP, the light is ON, and when the switch is DOWN ,
the light is OFF . 2

 We can illustrate the differences in the way these two systems work by means of
a graph-like diagram (Figure 1.1). Time is considered to progress from left to
right, and the solid lines—which engineers often refer to as waveforms —indicate
what is happening.

 In this illustration, the digital waveform commences in its OFF state. After some
time it changes to its ON state, and sometime later it returns to its OFF state. By
comparison, in the case of the analog waveform, we typically don’t think in
terms of ON and OFF. Rather, we tend to regard things as being more ON or
more OFF with an infi nite number of values between these two extremes.

 1 In England, analog is spelled analogue, and it’s pronounced with a really cool accent.
 2 At least, that’s the way they work in America. It’s the opposite way round in England, and
you take your chances in the rest of the world.

Analog Versus Digital CHAPTER 1 5

 MULTI-VALUE DIGITAL SYSTEMS
 One interesting point about digital systems is that they can have more than
two states. These states are called quanta (from the Latin quantus, meaning
 “ how much ” or “how great ”), and the accuracy or resolution of a digital value
is dependent on the number of quanta employed to represent it. For example,
consider a fun-loving fool sliding down a ramp mounted alongside a staircase
(Figure 1.2).

Digital
signal

Analog
signal

Off OffOn

FIGURE 1.1
 Digital versus analog waveforms.

Ground

Step 1

Step 2

Step 3

Platform

Step 4

FIGURE 1.2
 Staircase and ramp.

 In order to accurately determine this person’s position on the ramp, an inde-
pendent observer would require the use of a tape measure. (Of course, everyone

SECTION 1 Fundamentals6

involved would have to be in agreement as to the specifi c end points being mea-
sured, such as the tip of the ramp-slider’s nose or his belly button, for example.)
The exact position on the ramp, as measured using the tape measure, would be
considered to be an analog value. In this case, the analog value most closely rep-
resents the real world and can be as precise as the measuring technique allows.

 Alternatively, an observer could estimate the ramp-slider’s approximate loca-
tion in relation to the nearest stair. Such an estimation would be considered to
be a digital value.

 Assume that at some starting time we’ll call T0 (time zero), our thrill-seeker is bal-
anced at the top of the ramp preparing to take the plunge. He commences slid-
ing at time T1 and reaches the bottom of the ramp at time T2 . If the ramp-slider
were to be holding a pen against the wall during his descent, we would see a
graphical depiction of his descent on the wall. (My mother used to hate it when
I performed experiments of this nature. “Clive, ” she would say, because that’s my
real name, “you’ve got to stop doing this sort of thing, you’re 30 years old for goodness
sake!”) Similarly, analog and digital waveforms can be plotted representing the
location of the person on the ramp as a function of time (Figure 1.3).

 Once again, the horizontal axis in both
waveforms represents the passage of time,
which is considered to progress from left to
right. In the case of the analog waveform, the
vertical axis is used to represent our thrill-
seeker’s exact location in terms of height
above the ground, and is therefore annotated
with real, physical units. By comparison, the
vertical axis for the digital waveform is anno-
tated with abstract labels, which do not have
any units associated with them.

 EXPERIMENTS WITH BRICKS
 To examine the differences between analog
and digital views in more detail, let’s consider
a brick suspended from a wooden beam by a
piece of elastic. If the brick is left to its own
devices, it will eventually reach a stable state
in which the pull of gravity is balanced by
the tension in the elastic (Figure 1.4).

T2T1T0

Time

H
ei

gh
t (

ph
ys

ic
al

 u
ni

ts
)

Analog view

Step 1

Step 2

Step 3

Step 4

Platform

T2T1T0

Time

N
ea

re
st

 s
te

p

Digital view

Ground

FIGURE 1.3
 Waveforms showing
the ramp-slider’s
position.

Analog Versus Digital CHAPTER 1 7

 Let’s assume that at time T0 the system is in its stable state. The system remains in
this state until time T1 , when an inquisitive passerby grabs hold of the brick and
pulls it down, thereby increasing the tension on the elastic. It takes some amount
of time to pull the brick down, and it reaches its lowest point at time T2 .

 The passerby hangs around for a while looking somewhat foolish, releases the brick
at time T3, and thereafter exits from our story, never to cross our paths again. 3 The
brick’s resulting motion may be illustrated using an analog waveform (Figure 1.5).

 Now consider a digital view of the brick’s motion represented by two quanta
labeled LOW and HIGH. The LOW quanta may be taken to represent any height
less than or equal to the system’s stable position, and the HIGH quanta therefore
represents any height greater than the stable position (Figure 1.6). (Our original
analog waveform is shown as a dotted line.)

 Although it is apparent that the digital view is a subset of the analog view, digi-
tal representations often provide extremely useful approximations of the real
world. If the only requirement in the above example is to determine whether
the brick is above or below the stable position, for example, then the digital
view is the most appropriate.

Wooden beam

Elastic

Brick

Stable position
(tension in elastic balances pull of gravity)

FIGURE 1.4
 Brick suspended by elastic.

 3 Alright, alright—just after releasing the brick, our passerby walked around a corner and
bumped into a beautiful girl. They fell in love, got married, bought a small cottage in the
country, had three children (two girls and a boy), and lived happily ever after.

SECTION 1 Fundamentals8

T0 T1 T2 T3 Time

Stable
position

Height

FIGURE 1.5
 Brick on elastic: Analog waveform.

T0 T1 T2 T3 Time

Stable
position

Analog bandsDigital state

High

Low
Below the

stable position

Above the
stable position

FIGURE 1.6
 Brick on elastic: Two-quanta digital system.

 4 We consider this concept of digital resolution in a little more detail in Chapter 13: Analog-
to-Digital and Vice Versa .

 The accuracy or resolution of a digital view can be improved by adding more
quanta. For example, consider a digital view with fi ve quanta: LOW , LOW-MIDDLE ,
MIDDLE, HIGH-MIDDLE, and HIGH. As the number of quanta increases, the digital
view more closely approximates its analog counterpart (Figure 1.7). 4

Analog Versus Digital CHAPTER 1 9

 In the real world, every electronic component behaves in an analog fashion.
However, these components can be connected together so as to form functions
whose behavior is amenable to digital approximations. This book predominantly
concentrates on the digital view of electronics, although certain aspects of analog
designs and the effects associated with them are discussed where appropriate.

T0 T1 T2 T3 Time

Analog bandsDigital state

High

Low

High-middle

Middle

Low-middle

FIGURE 1.7
 Brick on elastic: Five-quanta digital system.

 MAX’S ENTRY TO THE 2008 BULWER-LYTTON FICTION
CONTEST
 Before you peruse my humble offering, let’s remind ourselves that the point of this contest

is to write a single sentence representing the worst possible (although grammatically

correct) opening sentence for a hypothetical fi ctional book. Now read on …

 As the hours passed, the expressions on the partygoers ’ faces became increasingly

bemused and bewildered as my mother—having grabbed the conversational reins with

gusto and abandon using one of her classic opening gambits of “ I bumped into Mrs.

Forteskew-Smythe at the fi shmonger’s the other day … ” —proceeded to inundate the

gathered throng with a myriad of seemingly innocuous and unrelated details: “ … you

remember, she was the oldest of three sisters; the youngest, Beryl, was a slut, while the

middle girl eloped with a transsexual Australian taxidermist and they had two sons who

couldn’t bring themselves to touch any form of fruit, and … ” and I could see the question

forming in everyone’s minds: “ Can she possibly tie all of these tidbits of trivia together and

somehow bring this tortuous tale to a meaningful close? ” … and I cowered against the wall

wearing a tight, grim smile because I knew, to my cost, that she could.

This page intentionally left blank

11

PROTONS, NEUTRONS, AND ELECTRONS
Matter, the stuff that everything is made of, is formed from atoms. The heart of
an atom, the nucleus, is composed of protons and neutrons and is surrounded by
a cloud of electrons.1 For example, consider an atom of the gas helium, which
consists of two protons, two neutrons, and two electrons (Figure 2.1).

CHAPTER 2CHAPTER 2

Atoms, Molecules, and
Crystals

1We now know that protons, neutrons, and electrons are formed from fundamental parti-
cles called quarks, of which there are six fl avors: up, down, charm, strange, top (or truth), and
bottom (or beauty). Quarks are so weird that they have been referred to as “The dreams that
stuff is made from,” and they are way beyond the scope of this book.

�ve

�ve
e

N
P

P
N

�ve
e

�ve

P � Proton
N � Neutron
e � electron
�ve � positive charge
�ve � negative charge

FIGURE 2.1
Helium atom.

SECTION 1 Fundamentals12

It may help to visualize the electrons as orbiting the nucleus in the same
way that the moon orbits the earth. Things aren’t this simple in the real world
(the location of each electron at any particular point in time is best described
by a probability function), but the concept of orbiting electrons serves our
purpose here.

Each proton carries a single positive (�ve) charge, and each electron carries a
single negative (�ve) charge. The neutrons are neutral and act like glue, hold-
ing the nucleus together and resisting the natural tendency of the protons to
repel each other. Protons and neutrons are approximately the same size, while
electrons are very much smaller. If a basketball were used to represent the
nucleus of a helium atom, then on the same scale, softballs could represent
the individual protons and neutrons, while large garden peas could represent
the electrons. In this case, the diameter of an electron’s orbit would be approxi-
mately equal to the length of 250 American football fi elds (excluding the end
zones)! Thus, the majority of an atom consists of empty space. If all the empty
space were removed from the atoms that form a camel, it would be possible for
the little rascal to pass through the eye of a needle!2,3,4

The number of protons determines the type of the element; for example, hydro-
gen has one proton, helium two, lithium three, etc. Atoms vary greatly in size,
from hydrogen with its single proton to those containing hundreds of protons.
The number of neutrons does not necessarily equal the number of protons.
There may be several different fl avors, or isotopes, of the same element differing
only in their number of neutrons. For example, hydrogen has three isotopes
with zero, one, and two neutrons; these isotopes are called hydrogen, deuterium,
and tritium, respectively.

Left to its own devices, each proton in the nucleus will have a complementary
electron. If additional electrons are forcibly added to an atom, the result is a
negative ion of that atom; if electrons are forcibly removed from an atom, the
result is a positive ion.

3In fact, the “needle” was a small, man-sized gate located next to the main entrance to
Jerusalem. Camels, wagons, and so forth were obliged to pass through the main gate, while
people could choose to go through the smaller opening if the main gate was closed.
4Be warned! The author has discovered to his cost that if you call a zoo to ask the cubic vol-
ume of the average adult camel, they treat you as if you are a complete idiot.

2I am, of course, referring to the Bible verse: “It is easier for a camel to go through the eye of
a needle than for a rich man to enter the kingdom of God.” (Mark 10:25; New International
Version).

Atoms, Molecules, and Crystals CHAPTER 2 13

QUANTUM LEVELS AND ELECTRON SHELLS
In an atom where each proton is balanced by a complementary electron, one
would assume that the atom would be stable and content with its own com-
pany, but things are not always as they seem. Although every electron contains
the same amount of negative charge, electrons orbit the nucleus at different
levels, known as quantum levels or electron shells (the term quantum comes from
the Latin quantus, meaning “how much” or “how great”).

Each electron shell requires a specifi c number of electrons to fi ll it; the fi rst shell
requires two electrons, the second requires eight, etc. Thus, although a hydrogen
atom contains both a proton and an electron and is therefore electrically balanced,
it is still not completely happy with its lot. Given a choice, hydrogen would prefer
to have a second electron to fi ll its fi rst electron shell. However, simply adding a
second electron is not the solution; although the fi rst electron shell would now be
fi lled, the extra electron would result in an electrically unbalanced negative ion.

MAKING MOLECULES
The previous point could present a bit of a poser, but the maker of the uni-
verse came up with a solution: atoms can use the electrons in their outermost
shell to form bonds with other atoms. The atoms share each other’s electrons,
thereby forming more complex structures. One such structure is called a mol-
ecule; for example, two hydrogen atoms (chemical symbol: H), each compris-
ing a single proton and electron, can bond together and share their electrons to
form a hydrogen molecule (chemical symbol: H2; Figure 2.2).

Hydrogen atom (H)

�ve

P

�veHydrogen atom (H)

�ve

P
�ve

Hydrogen molecule (H2)

�ve
P

�ve
P

�ve

�ve

e

e

e

e

FIGURE 2.2
Two hydrogen atoms bonding to form a hydrogen molecule.

SECTION 1 Fundamentals14

The electrons contained in the outermost (valence) electron shell of an atom
are known as valence electrons (from the Latin valentia, meaning “strength,” or
“worth”), so these types of bonds are called valence bonds. The resulting hydro-
gen molecule contains two protons and two electrons from its constituent
atoms and so remains electrically balanced. However, each atom lends its elec-
tron to its partner and, at the same time, borrows an electron from its part-
ner. This can be compared to two circus jugglers passing objects between each
other—the quickness of the hand deceives the eye. The electrons are passing
backwards and forwards between the atoms so quickly that each atom is fooled
into believing it has two electrons. The fi rst electron shell of each atom appears
to be completely fi lled and the hydrogen molecule is therefore stable.

Even though the hydrogen molecule is the simplest molecule of
all, the previous illustration demanded a signifi cant amount of
time, space, and effort. Molecules formed from atoms containing
more than a few protons and electrons would be well-nigh impos-
sible to represent in this manner. A simpler form of representation
is therefore employed, with two dashed lines indicating the shar-
ing of two electrons (Figure 2.3).

Now, let’s contrast the case of hydrogen with that of helium. Helium atoms
each have two protons and two electrons and are therefore electrically balanced.
Additionally, as helium’s two electrons completely fi ll its fi rst electron shell, this
atom is very stable.5 This means that under normal circumstances, helium atoms
do not go around casually making molecules with every other atom they meet.6

Molecules can also be formed by combining different types of
atoms. An oxygen atom (chemical symbol: O) contains eight
protons and eight electrons. Two of the electrons are used to
fi ll the fi rst electron shell, which leaves six left over for the sec-
ond shell. Unfortunately for oxygen, its second shell would
ideally prefer eight electrons to fi ll it. Each oxygen atom can
therefore form two bonds with other atoms—for example, with
two hydrogen atoms to form a water molecule (chemical sym-
bol: H2O; Figure 2.4). (The reason the three atoms in the water

H H
H2

H � hydrogen atom

FIGURE 2.3
Alternative
representation of a
hydrogen molecule.

H2O

H H

H � hydrogen atom
O � oxygen atom

O

FIGURE 2.4
Water molecule.

5Because helium is so stable, it is known as an inert, or noble, gas, where the latter appellation
presumably comes from the fact that helium doesn’t mingle with the commoners (grin).
6Noble gases rarely react with other elements since they are already stable. Under normal
conditions, they occur as odorless, colorless, monatomic gases. The six known noble gases
are: helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn).

Atoms, Molecules, and Crystals CHAPTER 2 15

molecule are not shown as forming a straight line is discussed in the section on
nanotechnology in Chapter 21: Alternative and Future Technologies).

Each hydrogen atom lends its electron to the oxygen atom and—at the same
time—borrows an electron from the oxygen atom. This leads both of the
hydrogen atoms to believe they have two electrons in their fi rst electron shell.
Similarly, the oxygen atom lends two electrons (one to each hydrogen atom)
and borrows two electrons (one from each hydrogen atom).

When the two borrowed electrons are added to the original six in the oxygen atom’s
second shell, this shell appears to contain the eight electrons necessary to fi ll it.
Thus, all the atoms in the water molecule are satisfi ed and the molecule is stable.

CRYSTALS AND OTHER STRUCTURES
Structures other than molecules may be formed
when atoms bond; for example, crystals. Carbon,
silicon, and germanium all belong to the same
family of elements. Each has only four electrons in
its outermost electron shell. Silicon has 14 protons
and 14 electrons; two electrons are required to fi ll
the fi rst electron shell and eight to fi ll the second
shell. Thus, only four remain for the third shell,
which would ideally prefer eight. Under the appro-
priate conditions, each silicon atom will form
bonds with four other silicon atoms, resulting in a
three-dimensional silicon crystal7 (Figure 2.5).

The electrons used to form the bonds in crystalline
structures such as silicon are tightly bound to their
respective atoms. Yet another structure is presented
by metals, such as copper, silver, and gold. Metals have an amorphous crystal-
line structure in which their shared electrons have relatively weak bonds and
may easily migrate from one atom to another.

Apart from the fact that atoms are the basis of life, the universe, and everything as
we know it, they are also fundamental to the operation of the components used in
electronic designs. Electricity may be considered to be vast herds of electrons migrat-
ing from one place to another, while electronics is the art and science of control-
ling these herds: starting them, stopping them, deciding where they can roam, and
determining the activities the little scamps are going to perform while on their way.

Si Si Si

Si Si Si

Si Si Si

FIGURE 2.5
Simplifi ed (two-
dimensional)
representation of the
three-dimensional
structure of crystalline
silicon.

7An equivalent structure formed from carbon atoms is known as diamond.

This page intentionally left blank

17

 CONDUCTORS AND INSULATORS
 A substance that conducts electricity easily is called a conductor. Metals such as
copper are very good conductors because the bonds in their amorphous crystal-
line structures are relatively weak, which means that the bonding electrons can
easily migrate from one atom to another. If a piece of copper wire is used to
connect a source with an excess of electrons to a target with too few electrons,
the wire will conduct electrons between them (Figure 3.1).

 If we consider electricity to be the migration of electrons from one place to
another, then we may also say that it fl ows from the more negative source
to the more positive target. As an electron jumps from the negative source
into the wire, it “ pushes ” (repels) the nearest electron in the wire out of
the way. This electron in turn pushes another, and the effect ripples down the
wire until an electron at the far end of the wire is ejected into the more posi-
tive target. When an electron arrives in the positive target, it neutralizes one of
the positive charges.

 An individual electron can take a surprisingly long time to migrate from one
end of the wire to the other. However, the time between an electron entering

 CHAPTER 3 CHAPTER 3

 Conductors, Insulators, and
Other Stuff

� �

�

� �

�

��

�

�
�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

Conducting target
depleted of electrons

Conducting source
with excess electrons

Copper wire

Migration of electrons

FIGURE 3.1
 Electrons fl owing
through a copper wire.

SECTION 1 Fundamentals18

one end of the wire and causing an equivalent electron to be ejected from the
other end is extremely fast. 1

 As opposed to a conductor, a substance that does not conduct electricity easily
is called an insulator. Materials such as rubber are very good insulators because
the electrons used to form bonds are tightly bound to their respective atoms. 2

 VOLTAGE, CURRENT, AND RESISTANCE
 One measure of whether a substance is a conductor or an insulator is how
much it resists the fl ow of electricity. In order to visualize this, let’s take a step
back and imagine a tank of water to which two pipes are connected at differ-
ent heights; the water ejected from the pipes is caught in two buckets, A and B
(Figure 3.2).

 Assume that the contents of the tank are magically maintained at a constant
level. The water pressure at the end of a pipe inside the tank depends on the
depth of the pipe with respect to the surface level of the water. The difference
in pressure between the ends of a pipe inside and outside the tank causes water

Water

Lower
pressure

Higher
pressure

Resistance

Less
flow

A B

Greater
flow

FIGURE 3.2
 Water tank
representation of
voltage, current, and
resistance.

 1 For a copper wire isolated in a vacuum, the speed of a signal propagating through the wire
is only fractionally less than the speed of light. However, the speed of a signal is modifi ed
by a variety of factors, including any materials surrounding or near the conductor. Signal
speeds in electronic circuits vary, but are typically in the vicinity of half the speed of light.
 2 In reality, everything conducts if presented with a suffi ciently powerful electric potential.
For example, if you don a pair of rubber boots and then fl y a kite in a thunderstorm, your
rubber boots won’t save you when the lightning comes racing down the kite string! (Bearing
in mind that litigation is a national sport in America, do NOT try this at home unless you
are a professional.)

Conductors, Insulators, and Other Stuff CHAPTER 3 19

to fl ow. The amount of water fl owing through a pipe depends on the water
pressure and on the resistance to that pressure determined by the pipe’s cross-
sectional area. A thin pipe with a smaller cross-sectional area will present more
resistance to the water than will a thicker pipe with a larger cross-sectional area.
Thus, if both pipes have the same cross-sectional area, bucket B will fi ll faster
than bucket A .

 In electronic systems, the fl ow of electricity is called current, measured in units
of amperes or amps ; 3 , 4 the resistance to electrical fl ow is simply called resistance,
measured in units of ohms ; 5 and the electrical equivalent to pressure is called
voltage , or electric potential, measured in units of volts . 6

 One other concept we should perhaps mention here is that of power. Consider
the effect of a barrel of water being slowly dripped on top of you. Apart from get-
ting wet, you wouldn’t really notice any ill effect. By comparison, imagine what it
would feel like if a small cupful of water travelling at 1000 miles per hour were to
hit you in the face; this would certainly attract your attention. In the context of our
water tank representation shown in Figure 3.2 , the “ power ” associated with the
water is a function of both the quantity of fl owing water and the speed at which
it fl ows. Similarly, in the context of an electronic circuit, the amount of power,
which is measured in units of watts, 7 is determined by the equation: P � V � I
(Power � Voltage multiplied by Current). But we digress …

 RESISTANCE AND RESISTORS
 The materials used to connect components in electronic circuits are typically
selected to have low resistance values. In some cases, however, engineers make

 3 The terms amp and ampere are named after the French mathematician and physicist André-Marie
Ampère (1775–1836), who formulated one of the basic laws of electromagnetism in 1820.
 4 An amp corresponds to approximately 6,250,000,000,000,000,000 electrons per second
fl owing past a given point in an electrical circuit. (Not that the author counted them him-
self, you understand; this little nugget of information is courtesy of Microsoft’s multimedia
encyclopedia, Encarta.)
 5 The term ohm is named after the German physicist Georg Simon Ohm (1789–1854), who
defi ned the relationship between voltage, current, and resistance in 1827. (We now call this
Ohm’s Law.)
 6 The term volt is named after the Italian physicist Count Alessandro Giuseppe Antonio Anastasio
Volta (1745–1827), who invented the electric battery in 1800. (Having said this, some people
believe that an ancient copper-lined jar found in an Egyptian pyramid was in fact a primitive
battery … but, there again, some people will believe anything. Who knows for sure?)
 7 The term watt is named after the Scottish inventor and engineer James Watt (1736–1819),
whose improvements to the steam engine were fundamental to the changes brought by the
Industrial Revolution.

SECTION 1 Fundamentals20

use of special resistive components called resistors. The value of resis-
tance (R) depends on the resistor’s length, cross-sectional area, and
the resistivity of the material from which it is formed. Resistors come
in many shapes and sizes; a common example could be as shown in
 Figure 3.3 . 8

 In a steady-state system where everything is constant, the voltage, cur-
rent, and resistance are related by a rule called Ohm’s Law, which states
that voltage (V) equals current (I) multiplied by resistance (R). An easy
way to remember Ohm’s Law is by means of a diagram known as Ohm’s
Triangle (Figure 3.4).

FIGURE 3.3
 Resistor: Component
and symbol.

Approximate actual size

(a) Discrete component

R

(b) Symbol

V

R

RI

V

V

I

R
I � V/R

V � I � R

R � V/ I

I

FIGURE 3.4
 Ohm’s Triangle.

Ohm’s law: V � I � R
I � V/R
I � 5 volts/10 ohms
I � 0.5 amps

R � 10 ohms

� 5 volts

0 volts

I

FIGURE 3.5
 Current fl owing through a resistor.

 8 In addition to the simple two-terminal resistor illustrated in Figure 3.3 , there are also variable
resistors (sometimes called potentiometers), in which a third “center” connection is made via a
conducting slider. Changing the position of the slider (perhaps by turning a knob) alters the rel-
ative resistance between the center connection and the two ends. There are also a variety of sen-
sor resistors, including light-dependent resistors (LDRs) whose value depends on the amount of
light falling on them, heat-dependent resistors called thermistors, and voltage-dependent resistors
called VDRs or varistors. See also the Memristor topic toward the end of this chapter.

 With regard to Figure 3.5 , instead of writing “5 volts, ” engineers would

typically abbreviate this to “5 V. ” Similarly, instead of writing “0.5 amps, ”

engineers would typically abbreviate this to “0.5 A. ” Also, the Greek letter

omega (Ω) is used to represent resistance, so instead of writing “10 ohms, ”

engineers would typically abbreviate this to “10 Ω . ”

 Observe that no space is used in the case of a single letter unit qualifi er

like 0.5 A (or 10 Ω), but a space is required when using a multi-letter

unit qualifi er such as 500 mA (where “m” stands for milli , meaning

 “ thousandth”).

 Consider a simple electrical circuit comprising two wires with elec-
trical potentials of 5 volts and 0 volts, connected by a resistor of 10
ohms (Figure 3.5).

Conductors, Insulators, and Other Stuff CHAPTER 3 21

 We should also note that engineers use the International System of Units
(abbreviated to SI from the French “ Le Système International d’Unités ”), which is
the modern form of the metric system. In the case of an SI unit that is derived
from the proper name of a person, the fi rst (often only) letter of its symbol
must be in uppercase (V, A, W, Hz, etc.). By comparison, when this type of SI
unit is spelled out in English, it should always begin with a lowercase letter
(volt, amp, watt, hertz, etc.), except when used at the beginning of a sentence or
in capitalized material such as a title.

 Observe that Figure 3.5 shows the direction of current fl ow as being from the
more positive (�5 volts) to the more negative (0 volts). This may seem strange
as, from our previous discussions, we know that current actually consists of
electrons migrating from a negative source to a positive target.

 The reason for this inconsistency is that the existence of electricity was dis-
covered long before it was fully understood. Electricity as a phenomenon was
known for quite some time, but it wasn’t until the early part of the 20th cen-
tury that British physicist Sir Joseph John (J.J.) Thomson (1856–1940) proved
the existence of the electron at the University of Aberdeen, Scotland. The men
who established the original electrical theories had to make decisions about
things they didn’t fully understand. The direction of current fl ow is one such
example; for a variety of reasons (some of them being philosophical), it was
originally believed that current fl owed from positive to negative. As you may
imagine, this inconsistency can, and does, cause endless problems.

 CAPACITANCE AND CAPACITORS
 Now imagine a full water tank A connected by a blocked pipe to an empty
water tank B [Figure 3.6(a)]. Assume that the contents of tank A are magically
maintained at the same level regardless of the amount of water that is removed.
At some time T0 (“time zero ”), the pipe is unblocked and tank B starts to fi ll.
By the time we’ll call TFULL , tank B will have reached the same level as tank A
[Figure 3.6(b)].

 The speed with which tank B fi lls depends on the rate at which water fl ows
between the two tanks. In turn, the rate of water fl ow depends on the difference
in pressure between the two ends of the pipe and any resistance to the fl ow
caused by the pipe. When the water starts to fl ow between the tanks at time T0 ,
there is a large pressure differential between the end of the pipe in tank A and
the end in tank B, so the water will fl ow quickly. As tank B fi lls, however, the
pressure differential between the tanks will be reduced correspondingly. This

SECTION 1 Fundamentals22

means that tank B fi lls faster at the beginning of the process than it does at the
end. The rate at which tank B fi lls has an exponential characteristic that is best
illustrated by a graph (Figure 3.7).

 The electronic equivalent of water tank B
stores electrical charge. This ability to store
charge is called capacitance, measured in
units of farads . 9 Capacitance effects occur
naturally in electronic circuits, and engi-
neers generally try to ensure that their val-
ues are as low as possible. In some cases,
however, designers may make use of special
capacitive components called capacitors .
One type of capacitor is formed from two
metal plates separated by a layer of insulat-
ing material; the resulting capacitance (C)
depends on the surface area of the plates,

the size of the gap between them, and the non-conducting (dialectric) mate-
rial used to fi ll the gap. Capacitors come in many shapes and sizes; a common
example could be as shown in Figure 3.8 .

Water

A B A B

D
ep

th
�

 d

D
ep

th
�

 d

Pipe linking tanks is blocked.
Blockage is removed at time T0

(a) By time TFULL tank B has filled
to the same level as tank A.

(b)

FIGURE 3.6
 Water tank
representation of
capacitance.

 9 The term farad is named after the British scientist Michael Faraday (1791–1867), who con-
structed the fi rst electric motor in 1821.

d

TFULL

Time
T0

Exponential
characteristic

Water depth
(tank B)

FIGURE 3.7
 Graphical
representation of the
rate at which a water
capacitor fi lls.

Conductors, Insulators, and Other Stuff CHAPTER 3 23

 10 During each successive TRC time constant, the capacitor will charge 63% of the remaining
distance to the maximum voltage level. A capacitor is generally considered to be fully charged
after fi ve time constants.

FIGURE 3.8
 Capacitor: Component
and symbol.

(a) Discrete component

Approximate actual size

(b) Symbol

C

 Now consider a simple circuit comprising a resistor, a capacitor, and a
switch. Initially the switch is in the OPEN (OFF) position, the capaci-
tor voltage VCAP is 0 volts, and no current is fl owing [Figure 3.9(a)].

 When the switch is CLOSED (turned ON), any difference in potential
between VPOS (a positive voltage source) and VCAP will cause current to
fl ow through the resistor [Figure 3.9(b)]. As usual, the direction of cur-
rent fl ow is illustrated in the classical (positive-to-negative) rather than
the actual (negative-to-positive) sense. The current fl owing through the
resistor causes the capacitor to charge towards VPOS [Figure 3.10(a)]. But
as the capacitor charges, the difference in voltage between VPOS and VCAP
decreases, and consequently so does the current [Figure 3.10(b)].

 The maximum current IMAX occurs at time T0 when there is the greatest differ-
ence between VPOS and VCAP . From Ohm’s Law, we know that IMAX � VPOS / R .
The capacitor is considered to be completely
charged by time TFULL , at which point the fl ow
of current falls to zero.

 The time TRC equals R � C and is known as
the RC time constant. With R in ohms and C in
farads, the resulting TRC is in units of seconds.
The RC time constant is approximately equal
to the time taken for VCAP to achieve around
63% of its fi nal value and for the current to
fall to around 37% of its initial value. 10

 Once a circuit has reached a steady-state condi-
tion where nothing is changing, any capacitors
act like OPEN (OFF) switches; the effects of these
components only come into play when signals
are transitioning between different values.

 INDUCTANCE AND INDUCTORS
 This is the tricky one. The author has yet to see a water-based analogy for inductance
that didn’t leak like a sieve (pun intended). One useful analogy is to consider two

FIGURE 3.9
 Resistor-capacitor-
switch circuit.

VPOS volts

R

Switch

0 volts

C

VCAP

(a) Switch is open

VCAP

(b) At time T0
switch is closed

VPOS volts

I

R

Switch

0 volts

C

SECTION 1 Fundamentals24

FIGURE 3.10
 Voltage and current characteristics of the resistor-capacitor-switch circuit.

VCAP

Time0 volts
T0 TRC

~63%

VPOS volts

TFULL

(a) Voltage characteristic of VCAP

I

Time

~37%

TFULL

IMAX

T0 TRC

0 amps

(b) Current flowing in the circuit

�ve

Resulting electro-
magnetic field

Copper wire

�ve (Applied voltage)

FIGURE 3.11
 Current fl owing through
a wire generates an
electromagnetic fi eld.

electric fans facing each other on a desk. If you turn one of the fans on, the other
will start to spin in sympathy. In this case, we might say that the fi rst fan induces an
effect in the second. Well, electrical inductance is just like this, but different.

 What, you want more? Oh well, how about this then: a difference in electrical
potential between two ends of a conducting wire causes current to fl ow, and
current fl owing through a wire causes an electromagnetic fi eld to be generated
around that wire (Figure 3.11).

 Correspondingly, if a piece of wire is moved through an externally generated
electromagnetic fi eld, it cuts the lines of electromagnetic fl ux, resulting in an elec-
trical potential being generated between the two ends of the wire (Figure 3.12).

 Engineers sometimes make use of components called inductors, which may
be formed by winding a wire into a coil around a rod of iron or some other

Conductors, Insulators, and Other Stuff CHAPTER 3 25

ferromagnetic material (the wire would be coated by a layer of insulating mate-
rial to prevent coil windings forming electrical connections with each other
or with the rod). When a current is passed through the coil, the result is an
intense electromagnetic fi eld (Figure 3.13).

�ve

Direction of movement

�ve (Resulting voltage)

Externally generated
electromagnetic field

FIGURE 3.12
 A conductor
cutting through an
electromagnetic fi eld
generates an electrical
potential.

FIGURE 3.13
 Inductor: Component
and symbol. (a) Inductor component

Intense electro-
magnetic field

�ve �ve

(b) Symbol

L

 Now consider a simple circuit comprising a resistor, an inductor, and a switch.
Initially the switch is in the OPEN (OFF) position, the inductor voltage VIND is
at VPOS volts, and no current is fl owing [Figure 3.14(a)].

 As the inductor is formed from a piece of conducting wire, one might expect
that closing the switch at time T0 [Figure 3.14(b)] would immediately

SECTION 1 Fundamentals26

cause VIND to drop to 0 volts, but this is
not the case. When the switch is CLOSED
(turned ON) and current begins to fl ow,
the inductor’s electromagnetic fi eld starts
to form. As the fi eld grows in strength, the
lines of fl ux are pushed out from the cen-
ter, and in the process they cut through the
loops of wire forming the coil. This has the
same effect as moving a conductor through
an electromagnetic fi eld and a voltage dif-
ferential is created between the ends of the
coil. This generated voltage is such that it
attempts to oppose the changes causing it.
This effect is called inductance, the offi cial
unit of which is the henry . 11

As time progresses, the coil’s inductance
is overcome and its electromagnetic fi eld

is fully established. The resulting voltage and current curves are illustrated in
 Figures 3.15(a) and 3.15(b) , respectively.

 11 The term henry is named after the American inventor Joseph Henry (1797–1878), who
discovered inductance in 1832.

FIGURE 3.14
 Resistor-inductor-
switch circuit.

(a) Switch is open

VPOS volts

R

Switch

0 volts

VIND

L

(b) At time T0
switch is closed

VPOS volts

R

I

Switch

0 volts

VIND

L

FIGURE 3.15
 Voltage and current characteristics of the resistor-inductor-switch circuit.

(a) Voltage characteristic of VIND

VIND

Time
TSTABLET0

0 volts

VPOS volts

Time0 amps
T0

I

IMAX

TSTABLE

(b) Current flowing in the circuit

Conductors, Insulators, and Other Stuff CHAPTER 3 27

 Thus, by the time we’ll call TSTABLE , the inductor appears little different from any
other piece of wire in the circuit (except for its concentrated electromagnetic
fi eld). This will remain the case until some new event occurs to disturb the cir-
cuit—for example, opening the switch again.

 Once a circuit has reached a steady-state condition where nothing is changing,
any inductors act like simple pieces of wire; the effects of these components
only come into play when signals are transitioning between different values.

 As we noted above, inductors are typically formed by coiling insulated wire around
a rod of iron or some other ferromagnetic material. When you strike a musical tuning
fork, it rings with a certain frequency depending on its physical characteristics (size,
material, etc.). Similarly, an inductor has a natural resonant frequency depending
on the diameter of the rod, the material used to form the rod, the number of coils,
etc. For this reason, inductors may form part of the tuning circuits used in radios.

 Another common use of the inductive effect is to create components called
transformers. Consider Figure 3.16 in which two ferromagnetic rods are con-
nected by two ferromagnetic straps. Each rod has a coil of insulated wire
wrapped round it. For the purposes of this example, let’s assume that the input
to the coil on the left (VIN) is an oscillating signal in the form of a sine wave.

Input voltage VIN Output voltage VOUTIn Out

FIGURE 3.16
 A simple step-down
transformer.

 Suppose the output coil on the right comprises half the number of turns of the
input coil on the left. In this case, and assuming an ideal transformer with no
losses, the output voltage (VOUT) will be half the amplitude of the input voltage
and the output current will be twice that of the input current.

 This example would be referred to as a step-down transformer, because the out-
put voltage is lower than the input voltage. By comparison, if the output coil
on the right contained twice the number of turns of the input coil on the left,
then this would be a step-up transformer, because the output voltage would be
twice the amplitude of the input voltage and the output current would be half
that of the input current.

SECTION 1 Fundamentals28

 MEMRISTANCE AND MEMRISTORS
 The three fundamental passive 12 electronic components are: the capacitor,
which stores energy in an electrical fi eld; the resistor, which resists the fl ow of
electricity; and the inductor, which resists any change to the fl ow of electrical
current going through it.

 In 1971, Leon O. Chua (1936–) postulated a component called a memristor
(“memory resistor ”). A professor in the electrical engineering and computer
sciences department at the University of California, Berkeley, Chua strongly
believed that this fourth component should exist to provide conceptual sym-
metry with the resistor, inductor, and capacitor.

 As its name might suggest, the simplest way to think about this is as a resis-
tor with memory. Among many other potential uses, a memristor (if such a
beast existed) could be used to implement computer memory; a direct current
applied in the component could adjust its apparent resistance, which could
subsequently be observed (“read”) using alternating current.

 In April 2008, almost four decades after Chua’s original paper, a team of
engineers from Hewlett Packard (HP) led by the scientist R. Stanley Williams
published a paper describing the construction of a working memristor based
on a thin fi lm of titanium dioxide. Being much simpler than currently pop-
ular MOSFET transistor switches [see Chapter 4: Semiconductors (Diodes and
Transistors) and Chapter 15: Memory ICs] and also able to implement one bit of
memory in a single device, memristors are believed to offer some very exciting
possibilities for the future.

 IMPEDANCE AND REACTANCE
 This is where things start to get a little tricky, but I’ll try to be gentle (if your
brain starts to overheat, jump immediately to the Unit Qualifi ers topic at the
end of this chapter and return to ponder this later when your thinking organ
has cooled down).

 The term Direct Current (DC), also known as continuous current, refers to the
unidirectional fl ow of electric charge. Direct current is produced by sources
such as batteries or solar cells. By comparison, the term Alternating Current (AC)
refers to an electrical current whose magnitude and direction vary cyclically.

 12 We’ll consider the difference between passive and active components in Chapter 4:
Semiconductors (Diodes and Transistors) .

Conductors, Insulators, and Other Stuff CHAPTER 3 29

 Let’s assume that we have an AC signal in the form of a sine
wave, and that this signal is being fed into a simple electrical
circuit. 13 Purely for the sake of discussion, let’s fi rst assume that
we have an “ideal circuit ” comprising only resistors and zero-
resistance wires. In particular, let’s assume that there are no capac-
itors (or capacitive effects) or inductors (or inductive effects) in
this circuit. In this case, the voltages and currents associated with
any resistors in the circuit will always be in phase [Figure 3.17(a)].

 By comparison, in the case of a circuit that also contains capaci-
tors (or capacitive effects) and/or inductors (or inductive effects),
voltage and current values across these elements will be out of
phase [Figure 3.17(b)]. Specifi cally, the voltage across a capaci-
tor will lag the current passing through that capacitor, while the
voltage across an inductor will lead the current passing through
that inductor.

 And so we come to the concept of electrical impedance, or sim-
ply impedance, which describes a measure of opposition to a
sinusoidal alternating current. Electrical impedance extends the
concept of resistance to AC circuits, describing not only the rela-
tive amplitudes of the voltage and current, but also the relative
phases.

 Impedance (Z) is described as a complex quantity 14 using the
equation Z � R � iX, where the real part of the impedance is the
resistance (R) and the imaginary part is the reactance (X). The SI
unit of impedance, resistance, and reactance is the ohm.

 ADMITTANCE, CONDUCTANCE, AND SUSCEPTANCE
 Just for the sake of completeness (on the off-chance your aunt asks you about
this during your next family get-together, for example), let’s briefl y defi ne a few

 13 See Chapter 4: Semiconductors (Diodes and Transistors) for a discussion on the difference
between the terms electrical and electronic .

V

I

(a) Voltage and current
in phase

FIGURE 3.17
 Voltage and current
waveforms in and out
of phase.

V

I

(b) Voltage and current
out of phase phase

 14 If you aren’t familiar with the concept of complex numbers , just take it from me that they
have a real part and an imaginary part, where the imaginary part is prefi xed by the letter “ i. ”
On the off-chance you’re interested, “ i ” represents the square root of negative 1. This has to
be an imaginary number, because anything multiplied by itself (irrespective of whether it is
positive or negative) will result in a positive value.

SECTION 1 Fundamentals30

more terms. Before we start, I might point out that I personally have never had
occasion to use any of these little rapscallions in day-to-day conversation, but
you never know when something like this might come in handy.

 Consider a resistor with a resistance value of R. As we previously discussed,
R is measured in ohms and is represented by the capital Greek letter Omega
 “ Ω . ” Now, engineers often need to use the reciprocal of R in their calculations.
This is, of course, 1/R, and you would think that they would be happy to leave
it at that. Sadly not; instead, they call the resulting value conductance, which
they measure in mohs (that’s “ohms” spelled backwards) and represent with an
upside-down Omega character.

 But wait, there’s more. Do you recall the equation from the previous topic:
Z � R � iX, where Z is the impedance, R is the resistance, and X is the reac-
tance? Well, the reciprocal of the impedance (Z) is called the admittance (Y)
and the reciprocal of the reactance (X) is called the susceptance (B).

 Historically, admittance, conductance, and susceptance were all measured in
mohs. More recently, the offi cial SI unit for all three is the siemens (S), which is
named after the German inventor and industrialist Ernst Werner von Siemens
(popularly known as Werner von Siemens) (1816–1892).

 UNIT QUALIFIERS
 Engineers often work with very large or very small values of voltage, current,
resistance, capacitance, and inductance. As an alternative to writing endless
zeros, electrical quantities can be annotated with the qualifi ers given in Table
3.1 . For example, 15 M Ω 15 (15 megaohms) means fi fteen million ohms; 4 mA
(4 milliamps) means four one-thousandths of an amp; and 20 fF (20 femto-
farads) means a very small capacitance indeed.

 One last point that’s worth noting is that the qualifi ers kilo, mega, giga, tera, and
so forth mean slightly different things when we use them to describe the size
of computer memory. The reasoning behind this (and many other mysteries) is
revealed in Chapter 15: Memory ICs .

 15 Remember that the Greek letter omega “Ω ” is used to represent resistance.

Conductors, Insulators, and Other Stuff CHAPTER 3 31

 Unit Qualifi ers

 Qualifi er Symbol Factor Name (U.S.)

 yotta Y 1024 septillion (one million million million million)

 zetta Z 1021 sextillion (one thousand million million million)

 exa E 1018 quintillion (one million million million)

 peta P 1015 quadrillion (one thousand million million)

 tera T 1012 trillion (one million million)

 giga G 109 billion (one thousand million) 16

 mega M 106 million

 kilo k 103 thousand

 milli m 10� 3 thousandth

 micro μ or u 10 � 6 millionth

 nano n 10� 9 billionth (one thousandth of one millionth)

 pico p 10� l2 trillionth (one millionth of one millionth)

 femto f 10� l5 quadrillionth (one thousandth of one millionth of one millionth)

 atto a 10� 18 quintillionth (one millionth of one millionth of one millionth)

 zepto z 10� 21 sextillionth (one thousandth of one millionth of one millionth of
one millionth)

 yocto y 10� 24 septillionth (one millionth of one millionth of one millionth of one
millionth)

Table 3.1

 16 In Britain, “ billion ” traditionally used to mean “a million million ” (10 12). However, for
reasons unknown, the Americans decided that “ billion ” should mean “a thousand million ”
(10 9). Generally speaking, in order to avoid the confusion that would otherwise ensue, most
countries in the world (including Britain) have decided to go along with the Americans.

This page intentionally left blank

33

 HERDING WILD ELECTRONS
 As we noted in Chapter 2: Atoms, Molecules, and Crystals, electricity may be con-
sidered to be vast herds of electrons migrating from one place to another, while
electronics is the art and science of controlling these herds: starting them, stop-
ping them, deciding where they can roam, and determining the activities they are
going to perform while on their way. Ever since humans discovered electricity (as
opposed to electricity—in the form of lightning—discovering us), taming the lit-
tle rascal and bending it to our will has occupied a lot of thought and ingenuity.

 The fi rst, and certainly the simplest, form of control is the humble mechanical
switch. Consider a circuit consisting of a switch, a power supply (say a battery),
and a light bulb (Figure 4.1).

 When the switch is CLOSED, the light is ON; when the switch is OPEN, the
light is OFF. As we’ll see in Chapter 5: Primitive Logic Functions, we can actually
implement some interesting logical functions by connecting switches together
in different ways. If mechanical switches were all we had to play with, however,
the life of an electronics engineer would be somewhat boring. The folks in the
dim-and-distant past agreed, so they decided that
something with a little more “ zing ” was required …

 THE ELECTROMECHANICAL RELAY
 By the end of the 19th century, when Queen Victoria
still held sway over all she surveyed, the most sophis-
ticated form of control for electrical systems was the
electromechanical relay (Figure 4.2). This device con-
sisted of a rod of iron (or some other ferromagnetic

 CHAPTERCHAPTER 4 4

 Semiconductors (Diodes
and Transistors)

Switch

Power supply

Light

FIGURE 4.1
 The simplest control
device is a switch.

SECTION 1 Fundamentals34

material) wrapped in a coil of wire (the wire would be coated by a layer
of insulating material to prevent the coil windings forming electrical connec-
tions with each other or with the rod). Applying an electrical potential across
the ends of the coil caused the iron rod to act like a magnet. The magnetic
fi eld could be used to attract another piece of iron acting as a switch
[Figure 4.2(a)]. Removing the potential from the coil caused the iron bar to
lose its magnetism, and a small spring would return the switch to its inactive
state [Figure 4.2(b)].

 The relay is a digital component, because it is either ON or OFF. Although sim-
ple in concept, these devices were to prove enormously important with regard
to early control systems. This is because the outputs from one or more relays
can be used to control other relays, and the outputs from these relays can be
used to control yet more relays, and so on and so forth. In fact, by connecting
relays together in different ways it’s possible to create all sorts of things.

 Perhaps the most ambitious use of relays was to build gigantic electro-
mechanical computers, such as the Harvard Mark 1. Constructed between 1939
and 1944, the Harvard Mark 1 was 50 feet long, 8 feet tall, and contained over
750,000 individual components.

 The problem with relays (especially the types that were around in the early
days) is that they can only switch a limited number of times a second. This
severely limits the performance of a relay-based computer. For example, the
Harvard Mark 1 took approximately six seconds to multiply two numbers
together, so engineers started to look around for something that could switch
faster …

FIGURE 4.2
 The electromechanical
relay.

Coil
wires

(a) Potential applied to coil
[electromagnetic field closes switch]

Magnetic
field

Coil
wires

(b) No potential applied to coil
[spring (not shown) opens switch]

Switch

Ferromagnetic
rod

Semiconductors (Diodes and Transistors) CHAPTER 4 35

 THE FIRST VACUUM TUBES
 In 1879, the legendary American inventor Thomas Alva Edison (1847–1931)
publicly demonstrated his incandescent electric light bulb for the fi rst time. 1
This is the way it worked. A fi lament was mounted inside a glass bulb. Then all
the air was sucked out, leaving a vacuum. When electricity was passed through
the fi lament, it began to glow brightly (the vacuum stopped it from bursting
into fl ames).

 A few years later in 1883, one of Edison’s assistants discovered that he could
detect electrons fl owing through the vacuum from the lighted fi lament to a
metal plate mounted inside the bulb. Unfortunately, Edison didn’t develop this
so-called Edison Effect any further. In fact, it wasn’t until 1904 that the English
physicist Sir John Ambrose Fleming (1849–1945) used this phenomenon to
create the fi rst vacuum tube. 2 This device, known as a diode, had two termi-
nals and conducted electricity in only one direction (a feat that isn’t as easy to
achieve as you might think).

 In 1906, the American inventor Lee de Forest (1873–1961) introduced a third
electrode into his version of a vacuum tube. The resulting triode could be used
as both an amplifi er and a switch. De Forest’s triodes revolutionized the broad-
casting industry (he presented the fi rst live opera broadcast and the fi rst news
report on radio). Furthermore, their ability to act as switches was to have a tre-
mendous impact on digital computing.

 One of the most famous early electronic digital computers is the Electronic
Numerical Integrator and Calculator (ENIAC), which was constructed at the
University of Pennsylvania between 1943 and 1946. Occupying 1000 square feet,
weighing in at 30 tons, and employing 18,000 vacuum tubes, ENIAC was a mon-
ster … but it was a monster that could perform fourteen multiplications or 5000
additions a second, which was way faster than the relay-based Harvard Mark 1.

 However, in addition to requiring enough power to light a small town, ENIAC’s
vacuum tubes were horrendously unreliable, so researchers started looking for
a smaller, faster, and more dependable alternative that didn’t demand as much
power …

 1 Contrary to popular believe, this wasn’t the world’s fi rst incandescent bulb. In 1878, the
English physicist and electrician, Sir Joseph Wilson Swan (1828–1914) successfully demon-
strated a true incandescent bulb, a year earlier than Edison.
 2 Vacuum tubes are known as valves in England. This is based on the fact that they can be used
to control the fl ow of electricity, similar in concept to the way in which their mechanical
namesakes are used to control the fl ow of fl uids.

SECTION 1 Fundamentals36

 SEMICONDUCTORS
 Most materials are conductors, insulators, or something in-between, but a spe-
cial class of materials known as semiconductors can be persuaded to exhibit both
conducting and insulating properties.

 The fi rst semiconducting material to undergo serious evaluation was the ele-
ment germanium (chemical symbol: Ge). However, for a variety of reasons,
silicon (chemical symbol: Si) replaced germanium as the semiconductor of
choice. As silicon is the main constituent of sand and one of the most com-
mon elements on earth (silicon accounts for approximately 28% of the earth’s
crust), we aren’t in any danger of running out of it in the foreseeable future.

 Pure crystalline silicon acts as an insulator; however, scientists at Bell
Laboratories in the United States found that by inserting certain impurities
into the crystal lattice, they could make silicon act as a conductor. The process
of inserting the impurities is known as doping, and the most commonly used
dopants are boron atoms (chemical symbol: B) with three electrons in their out-
ermost electron shells, and phosphorus atoms (chemical symbol: P) with fi ve.

 If a piece of pure silicon is surrounded by a gas containing boron or phosphorus and
heated in a high-temperature oven, the boron or phosphorus atoms will permeate
the crystal lattice and displace some silicon atoms without disturbing other atoms
in the vicinity. This process is known as diffusion. Boron-doped silicon is called
P-type silicon and phosphorus-doped silicon is called N-type silicon (Figure 4.3). 3

P

N

Pure silicon

Boron gas

Phosphorus gas

P-type silicon

N-type silicon

FIGURE 4.3
 Creating P-type and
N-type silicon.

 3 If you ever happen to run across a “full-up” illustration of an integrated circuit, as shown
in Chapter 14: Integrated Circuits (ICs), you may see annotations like n, n � , n � �, p, p � , and
p � �. In this case, the n and p stand for standard N-Type and P-type material (which we
might compare to an average guy); the n � and p � indicate a heavier level of doping (say
a bodybuilder or the author fl exing his rippling muscles on the beach); and the n � � and
p � � indicate a really high level of doping (like a weightlifter on steroids).

Semiconductors (Diodes and Transistors) CHAPTER 4 37

 Due to the fact that boron atoms have only three electrons in their outermost
electron shells, they can only make bonds with three of the silicon atoms sur-
rounding them. This leaves the fourth silicon atom un-sated and eager to fi ll its
outermost electron shell. Thus, the site (location) occupied by a boron atom in
the silicon crystal will accept a free electron with relative ease and is therefore
known as an acceptor (it’s also called a hole). So, why do we call this “ P-Type
silicon? ” Well (unoffi cially), due to the fact that each site of a boron atom is
happy to accept an electron, we can visualize this site as being “ sort-of ” posi-
tive. However, the more “ offi cial ” reason is that we can regard holes as being
positive charge carriers (sort of the opposite of electrons).

 By comparison, as phosphorous atoms have fi ve electrons in their outermost
electron shells, the site of a phosphorous atom in the silicon crystal will donate
an electron with relative ease and is therefore known as a donor. Due to the fact
that it is happy to donate an electron, we can visualize this site as being “ sort-
of ” negative. But the real reason we call this “N-Type silicon ” is that the con-
ducting electrons are, of course, negative charge carriers.

 SEMICONDUCTOR DIODES
 As was noted above, pure crystalline silicon acts as an insulator. By comparison,
both P-type and N-type silicon are reasonably good conductors (Figure 4.4).

 The point when things start to become really interesting, however, is when a
piece of silicon is doped such that part is P-type and part is N-type. In order to
wrap our brains around this, consider what would happen if we were to take a
wooden toothpick, dip half of it in a pool of melted wax, remove it from the
wax and let it harden, briefl y immerse the whole thing in a cup of colored dye,
take it out of the dye, dry it off, and scrape away the wax. This leaves one-half
of our toothpick in its original state while the other half has been colored.

�ve

�ve

doesn’t
conduct

Pure
silicon

�ve

�ve

does
conduct

P-type
silicon

�ve

�ve

does
conduct

N-type
silicon

�ve and �ve indicate
positive and negative
voltage sources,
respectively (for
example, they could be
wires connected to the
terminals of a battery) FIGURE 4.4

 Pure silicon compared
to P-type and N-type
silicon.

SECTION 1 Fundamentals38

 Next, we fl ip the toothpick upside down, dip the half of the toothpick we just
tinted in melted wax, remove it from the wax and let it harden, briefl y immerse
the whole thing in a cup containing a different colored dye, take it out of the
dye, dry it off, and scrape away the wax. Now, one-half of our toothpick will be
one color, while the other half is a different color.

 Although the actual process is much more complex, we can do something sim-
ilar with a piece of silicon to make part P-type and part N-type as illustrated in
Figure 4.5 . We’ll return to consider this process in more detail in Chapter 14:
Integrated Circuits (ICs) . The result is known as a p-n junction .

�ve

�ve

doesn’t
conduct

Semiconductor
diode

P-type
silicon

�ve

�ve

does
conduct

N-type
silicon

N-type
silicon

P-type
silicon

FIGURE 4.5
 Mixing P-type and N-type silicon.

FIGURE 4.6
 Diode: Component and
symbol.

Approximate actual size

(a) Diode component

(b) Symbol

 4 If you want to know more about how this works at the nitty-gritty level, including terms
like depletion zones , then bounce over to Appendix G: More on Semiconductors .
 5 The semiconductor portion of semiconductor diode was initially used to distinguish these
components from their vacuum tube-based cousins. As semiconductors took over, however,
everyone started to refer to them simply as diodes .

 As we see, the silicon with both P-type and N-type material conducts elec-
tricity in only one direction; in the other direction it behaves like an OPEN
(OFF) switch. 4 These structures, known as semiconductor diodes, 5 come in
many shapes and sizes; an example could be as shown in Figure 4.6 .

 If the triangular body of the symbol is pointing in the classical direc-
tion of current fl ow (more positive to more negative), the diode will conduct.
An individually packaged diode (which would be referred to as a discrete compo-
nent) consists of a piece of silicon with connections to external leads, all encap-
sulated in a protective package (the silicon is typically smaller than a grain of
sand). The package protects the silicon from moisture and other impurities
and, when the diode is operating, helps to conduct heat away from the silicon.

Semiconductors (Diodes and Transistors) CHAPTER 4 39

 Due to the fact that diodes (and transistors, as discussed below) are formed
from solids—as opposed to vacuum tubes, which are largely formed from
empty space—people started to refer to components formed from semiconduc-
tors as solid-state electronics .

 BIPOLAR JUNCTION TRANSISTORS (BJTS)
 More complex components called transistors can be created by forming a sand-
wich out of three regions of doped silicon. The transistor and subsequently the
integrated circuit must certainly qualify as two of the greatest inventions of the
20th century.

 Unfortunately, serious research on semiconductors didn’t really commence
until World War II. At that time, it was recognized that devices formed from
semiconductors had potential as amplifi ers and switches, and could therefore
be used to replace the prevailing technology of vacuum tubes, but that they
would be much smaller, lighter, and would require less power. All these factors
were of interest to the designers of electronic systems such as radar, which were
to play a large role in the war.

 Bell Laboratories in the United States began research into semiconductors in
1945, and physicists William Shockley (1910–1989), Walter Brattain (1902–
1987), and John Bardeen (1908–1991) succeeded in creating the fi rst point-
contact germanium transistor on December 23, 1947. (They took a break for
the Christmas holidays before publishing their achievement, which is why
some reference books state that the fi rst transistor was created in 1948.)

 In 1950, Shockley invented a new device called a Bipolar Junction Transistor
(BJT), 6 , 7 which was more reliable, easier and cheaper to build, and gave more
consistent results than point-contact devices. BJTs are formed from three pieces
of doped silicon, called the collector, base, and emitter. There are two basic types
of bipolar transistors, called NPN and PNP, 8 where these names relate to the
manner in which the silicon is doped (Figure 4.7).

 In the analog world, a transistor can be used as a voltage amplifi er, a current
amplifi er, or a switch; in the digital world, a transistor is primarily considered
to be a switch. The structure of a transistor between the collector and emitter

 6 In conversation, the term BJT is spelled out as “ B-J-T. ”
 7 Apropos of nothing at all, the fi rst TV dinner was marketed by the C.A. Swanson company
three years later.
 8 In conversation, the terms NPN and PNP are spelled out as “ N-P-N ” and “ P-N-P, ”
respectively.

SECTION 1 Fundamentals40

terminals is similar to that of two
diodes connected back-to-back. Two
diodes connected in this way would
typically not conduct; however, when
signals are applied to the base ter-
minal, the transistor can be turned
ON or OFF. If the transistor is turned
ON, it acts like a CLOSED switch and
allows current to fl ow between the

collector and the emitter; if the transistor is turned OFF, it acts like an OPEN
switch and no current fl ows. We may think of the collector and emitter as data
terminals, and the base as the control terminal.

 As for a diode, an individually packaged transistor consists of the silicon, with
connections to external leads, all encapsulated in a protective package (the sili-
con is typically smaller than a grain of sand). The package protects the silicon
from moisture and other impurities and helps to conduct heat away from the
silicon when the transistor is operating. Transistors may be packaged in plastic
or in little metal cans about a quarter of an inch in diameter, with three leads
sticking out of the bottom (Figure 4.8).

 By the late 1950s, bipolar transistors were being manufactured out of silicon
rather than germanium (although germanium had certain electrical advantages,
silicon was cheaper and easier to work with). The original bipolar transistors
were manufactured using the mesa process, in which a doped piece of silicon
called the mesa (or base) was mounted on top of a larger piece of silicon form-
ing the collector, while the emitter was created from a smaller piece of silicon
embedded in the base.

(a) NPN bipolar junction transistor

Collector Collector

Silicon
Symbol

Emitter Emitter

Base

Base

N

P

N

FIGURE 4.7
 Bipolar junction
transistors (BJTs). (b) PNP bipolar junction transistor

Collector

Silicon

Emitter

Base

Collector

Symbol

Emitter

Base

P

N

P

Approx.6mm

FIGURE 4.8
 Individually packaged
transistor. (Photo
courtesy of Alan
Winstanley)

Semiconductors (Diodes and Transistors) CHAPTER 4 41

 In 1959, the Swiss physicist Jean Hoerni (1924–1997) invented the planar pro-
cess, in which optical lithographic techniques were used to diffuse the base
into the collector and then to diffuse the emitter into the base. One of Hoerni’s
colleagues, Robert Noyce (1927–1990), invented a technique for growing an
insulating layer of silicon dioxide over the transistor, leaving small areas over
the base and emitter exposed and diffusing thin layers of aluminum into these
areas to create wires. The processes developed by Hoerni and Noyce led directly
to modern integrated circuits. These techniques are discussed in more detail in
Chapter 14: Integrated Circuits (ICs) .

 METAL-OXIDE SEMICONDUCTOR FIELD-EFFECT
TRANSISTORS (MOSFETS)
 In reality, the properties of semiconductors did not start to become well
understood until the 1950s. Having said this, as far back as 1925, the Austro-
Hungarian scientist Dr. Julius Edgar Lilienfi eld (1881–1963) proposed the
basic principles behind what we would now recognize as a semiconductor
device called a Metal-Epitaxial Semiconductor Field-Effect Transistor (MESFET)
being used as an amplifi er. 9

 In 1926, Dr. Lilienfi eld immigrated to America and applied for a patent for this
device. On the off-chance you’re interested; the title of this little scamp (US
Patent 1,745,175) was “ Method and apparatus for controlling electric currents. ”
Two years later, in 1928 (US Patent 1,900,018), he described what we would
now recognize as a depletion-mode MOSFET. 10

 The term MOSFET (or MOS-FET or MOS FET) stands for Metal-Oxide
Semiconductor Field-Effect Transistor (we’ll explain what this mouthful means
in a moment). 11 , 12 In 1960, Dawon Kahng and Martin M. (John) Atalla at Bell
Labs fabricated the fi rst successful MOSFET. In 1962, Steven Hofstein and
Fredric Heiman at the RCA research laboratory in Princeton, New Jersey, cre-
ated an experimental integrated circuit comprising 16 MOSFETs.

 9 As an aside, during the early 1900s, Lilienfeld did some work with Count Ferdinand von
Zeppelin (1838–1917) on designing hydrogen-fi lled dirigibles.
 10 Nothing is simple. The MOSFETs discussed in this chapter are enhancement-type devices,
which are OFF unless a control signal is applied to the gate terminal to turn them ON. By
comparison, depletion-type devices are ON unless a control signal is applied to turn them
OFF. And then there are Junction FETs (JFETs) and MESFETs. See also Appendix G: More on
Semiconductors , for more details on all of these little ragamuffi ns.
 11 In conversation, the term MOSFET is pronounced as a single word, where “ MOS ” rhymes
with “ boss ” and “ FET ” rhymes with “ bet. ”
 12 These may also be referred to as Insulated Gate Field-Effect Transistors (IGFETs).

SECTION 1 Fundamentals42

 Although the original MOSFETs were somewhat slower than their bipolar tran-
sistors, they were cheaper, smaller, and used less power. Also of interest was the
fact that modifi ed metal-oxide semiconductor structures could be made to act
as capacitors or resistors.

 There are two basic types of MOSFETs, called n-channel and p-channel; once
again these names relate to the way in which the silicon is doped (Figure 4.9).

 In the case of these devices, the drain and source form the data terminals and
the gate acts as the control terminal. Unlike bipolar devices, the control termi-
nal is connected to a conducting plate, which is insulated from the silicon by a
layer of nonconducting oxide. In the original devices the conducting plate was
metal—hence, the term metal-oxide—but this is now something of a misnomer
because modern versions tend to use a layer of polycrystalline silicon (polysilicon).
When a signal is applied to the gate terminal, the plate, insulated by the oxide,
creates an electromagnetic fi eld, which turns the transistor ON or OFF —hence,
the term fi eld-effect.

 Now, this is the bit that always confuses the unwary, because the term channel
refers to the piece of silicon under the gate terminal; that is, the piece linking
the drain and source regions. But the channel in the n-channel device is formed
from P-type material, while the channel in the p-channel device is formed from
N-type material.

 At fi rst glance, this would appear to be totally counterintuitive, but there is rea-
son behind the madness. Let’s consider the n-channel device. In order to turn
this ON, a positive voltage is applied to the gate. This positive voltage attracts
any negative electrons in the P-type material and causes them to accumulate
beneath the oxide layer where they form a negative channel—hence, the term
n-channel. In fact, saying “n-channel” and “p-channel” is a bit of a mouthful,

Drain Drain

Silicon
Symbol

Source Source

Gate
Gate

Insulator

Conductor

(a) NMOS field-effect transistor

N

N

P

FIGURE 4.9
 Metal-oxide
semiconductor fi eld-
effect transistors
(MOSFETs).

Drain Drain

Silicon
Symbol

Source Source

Gate
Gate

Insulator

Conductor

(b) PMOS field-effect transistor

P

P

N

Semiconductors (Diodes and Transistors) CHAPTER 4 43

so instead we typically just refer to these as NMOS and PMOS transistors ,
respectively. 13

 This book concentrates on MOSFETs, because their symbols, construction, and
operation are relatively easy to understand as compared to their BJT cousins.

 THE TRANSISTOR AS A SWITCH
 To illustrate the application of a transistor as a switch, fi rst consider a simple
circuit comprising a resistor and a real switch (Figure 4.10).

 We’ll consider the meaning behind the VDD and VSS power supply labels in a moment.
For our purposes here, let’s simply assume that VDD is more positive than VSS .

 When the switch is OPEN (OFF), VOUT is connected via the resistor to VDD ; when
the switch is CLOSED (ON), VOUT is connected via the switch directly to VSS . In
this latter case, VOUT takes the value VSS because, like people, electricity takes the
path of least resistance, and the resistance to VSS through the closed switch is far
less than the resistance to VDD through the resistor. Observe that the waveforms
in Figure 4.10 show a delay between the switch operating and VOUT responding.
Although this delay is extremely small, it is important to note that there will
always be some elements of delay in any physical system.

 Now consider the case where the switch is replaced with an NMOS transistor
(Figure 4.11). Let’s assume that there’s a wire connected to the control input of

FIGURE 4.10
 Resistor-switch circuit.

(a) Circuit

VDD

Vout

Switch

VSS

R

(b) Waveform

Closed

Switch

Open

VDD

VOUT

VSS

Time

 13 In conversation, NMOS and PMOS are pronounced “ N-MOS ” and “ P-MOS, ” respectively.
That is, by spelling out the fi rst letter followed by “ MOS ” to rhyme with “ boss. ”

SECTION 1 Fundamentals44

the transistor (this wire isn’t shown here for simplicity), and that the other end
of this wire can be switched back and forth between VDD and VSS .

 When the control input to an NMOS transistor is connected to VSS , the transis-
tor is turned OFF and acts like an OPEN switch; when the control input is con-
nected to VDD , the transistor is turned ON and acts like a closed switch. Thus, the
transistor functions in a similar manner to the mechanical switch. However, a
mechanical switch controlled by hand can only be operated a few times a sec-
ond, but a transistor’s control input can be driven by other transistors, allowing
it to be operated hundreds of millions of times a second.

 Returning to the labels VSS and VDD , these are commonly used in circuits employ-
ing MOSFETs. At this point we have little interest in their actual values, and for
the purpose of these examples, need only assume that the VDD supply rail 14 is
more positive than the VSS rail. Why do we use these labels? Well, if you cast your
mind back to Chapter 3: Conductors, Insulators, and Other Stuff, you will recall that
current—in the form of electrons—fl ows from the more negative source to the
more positive target. In the case of the circuit shown in Figure 4.11 , the current
fl ows from the VSS rail (the “source”) into the transistor’s source terminal, through
the transistor, and “drains away ” out of its drain terminal into the VDD rail.

 GALLIUM ARSENIDE SEMICONDUCTORS
 Silicon is known as a four-valence semiconductor because it has four electrons avail-
able to make bonds in its outermost electron shell. Although silicon is the most

(a) Circuit

VDD

Vout

VSS

R

Control

FIGURE 4.11
 Resistor-NMOS
transistor circuit.

VDD

Control

VSS

VDD

VOUT

VSS

Time

(b) Waveform

 14 I don’t know where the term rail comes from in this context, but engineers say “supply
rail” or “power supply rail ” all the time.

Semiconductors (Diodes and Transistors) CHAPTER 4 45

commonly used semiconductor, there is another that requires some mention.
The element gallium (chemical symbol: Ga) has three electrons available in its
outermost shell, and the element arsenic (chemical symbol: As) has fi ve. A crys-
talline structure of gallium arsenide (GaAs) is known as a III-V valence semicon-
ductor 15 and can be doped with impurities in a similar manner to silicon.

 In a number of respects, GaAs is preferable to silicon, not the least of which
is that GaAs transistors can switch approximately eight times faster than their
silicon equivalents. However, GaAs is hard to work with, which results in GaAs
transistors being more expensive than their silicon cousins.

 LIGHT-EMITTING DIODES (LEDS)
 On February 9, 1907, one of Marconi’s engineers, Mr. H.J. Round of New York,
New York, had a letter published in Electrical World magazine as follows:

 15 In conversation, the Roman Numerals “ III-V ” are pronounced “ three-fi ve. ”

 To the editors of Electrical World:

 Sirs: During an investigation of the unsymmetrical passage of current through a contact

of carborundum and other substances a curious phenomenon was noted. On applying a

potential of 10 volts between two points on a crystal of carborundum, the crystal gave out

a yellowish light.

 Mr. Round went on to note that some crystals gave out green, orange, or blue
light. This is quite possibly the fi rst documented reference to the effect upon
which special components called light-emitting diodes (LEDs) are based. 16

 Sad to relate, no one seemed particularly interested in Mr. Round’s discovery,
and nothing really happened until 1922, when the same phenomenon was
observed by O. V. Losov in Leningrad. Losov took out four patents between
1927 and 1942, but he was killed during World War II and the details of his
work were never discovered.

 In fact, it wasn’t until 1951, following the discovery of the bipolar transistor,
that researchers really started to investigate this effect in earnest. They found that
by creating a semiconductor diode from a compound semiconductor formed
from two or more elements—such as gallium arsenide (GaAs) as mentioned

 16 In conversation, the term LED may be spelled out as “ L-E-D ” (in which case you would
say “an L-E-D ”) or pronounced as a single word to rhyme with “ bed ” (in which case you
would say “a LED ”).

SECTION 1 Fundamentals46

in the previous topic—light is emitted from the p-n junction, that is, the junc-
tion between the P-type and N-type doped materials.

 As for a standard diode, an LED conducts electricity in only one direction (and
it emits light only when it’s conducting). Thus, the symbol for an LED is simi-
lar to that for a normal diode, but with two arrows to indicate light being emit-
ted (Figure 4.12).

 An LED formed from pure gallium arsenide emits infrared light, which is use-
ful for sensors, but which is invisible to the human eye. It was discovered that
adding aluminum to the semiconductor to give aluminum gallium arsenide
(AlGaAs) resulted in red light humans could see. Thus, after much experimenta-
tion and refi nement, the fi rst red LEDs started to hit the streets in the late 1960s.

 LEDs are interesting for a number of reasons, not the least of which is that they
are extremely reliable, they have a very long life (typically 100,000 hours as
compared to 1000 hours for an incandescent light bulb), they generate very
pure, saturated colors, and they are extremely energy effi cient (LEDs use up to
90% less energy than an equivalent incandescent bulb).

 Over time, more materials were discovered that could generate different colors.
For example, gallium phosphide gives green light, and aluminum indium gal-
lium phosphite can be used to generate yellow and orange light. For a long
time, the only color missing was blue. This was important because blue light
has the shortest wavelength of visible light, and engineers realized that if they
could build a blue laser diode they could quadruple the amount of data that
could be stored on, and read from, a CD-ROM or DVD.

 However, although semiconductor companies spent hundreds of millions of
dollars desperately trying to create a blue LED, the little rapscallion remained
elusive for more than three decades. In fact, it wasn’t until 1996 that the
Japanese Electrical Engineer Shuji Nakamura demonstrated a blue LED based
on gallium nitride. Quite apart from its data storage applications, this discov-
ery also makes it possible to combine the output from a blue LED with its red
and green cousins to generate white light. Many observers believe that this may
ultimately relegate the incandescent light bulb to the museum shelf.

 ORGANIC LEDS (OLEDS)
 The traditional LEDs discussed in the previous topic are based on semiconduc-
tors formed from metalloidal materials such as silicon. When current fl ows
through the LED, positive and negative charges combine and light is emitted.

FIGURE 4.12
 Symbol for a LED.

Semiconductors (Diodes and Transistors) CHAPTER 4 47

An Organic Light-Emitting Diode (OLED) performs the same trick, but it is based
on thin layers of organic molecules (the term organic is used in this context
because these molecules have a “ backbone ” formed from carbon atoms, and
carbon is the key element for organic life as we know it).

 When used to produce displays, OLED technology produces self-luminous
displays that do not require backlighting. These properties result in compact
displays that require very little power and are much thinner and brighter than
their Liquid Crystal Display (LCD) counterparts.

 ACTIVE VERSUS PASSIVE AND ELECTRIC VERSUS
ELECTRONIC
 In this context, the term active is used to refer to a component that can use an
electrical signal to control the current passing through it; for example, transis-
tors are classed as active devices. By comparison, components that are incapable
of controlling current by means of another electrical signal are referred to as
passive devices. On this basis, resistors, capacitors, inductors, and even diodes—
all of which simply respond (in a “ passive ” sort of way) to whatever electrical
signals life throws at them—are therefore all classed as passive devices.

 Some purists would say that in order for a circuit to be properly called “elec-
tronic, ” it must contain one or more active devices. On this basis, a circuit
comprising only resistors, capacitors, and inductors would be considered to be
an “electric circuit ” rather than an “electronic circuit. ” (Personally, I don’t care
what other people think and I would still call it an electronic circuit, but you
can make your own decision on this point.)

This page intentionally left blank

49

 SWITCH REPRESENTATIONS OF AND AND OR
FUNCTIONS
 Before we leap into the fray, let’s fi rst perform a couple of simple thought
experiments involving switches and light bulbs. Consider an electrical circuit
consisting of a power supply, a light, and two switches connected in series, one
after the other [Figure. 5.1(a)].

 The switches are the inputs to the circuit and the light is the output. A truth
table provides a convenient way to represent the operation of the circuit
[Figure. 5.1(b)]. As the light is only ON when both the a and b switches are
CLOSED (ON), this circuit could be said to perform a 2-input AND function. 1

 CHAPTERCHAPTER 5 5

 Primitive Logic Functions

 1 A 3-input version could be constructed by adding a third switch in series with the fi rst two.

Switch

Switch

Light

a

b

y

Power supply

(a) Circuit

OPEN
OPEN

CLOSED
CLOSED

a

OPEN
CLOSED

OPEN
CLOSED

b

OFF
OFF
OFF
ON

y

(b) Truth table

FIGURE 5.1
 Switch representation of a 2-input AND function.

SECTION 1 Fundamentals50

 Not surprisingly, the way in which the circuit functions depends on the way
in which the switches are connected. Consider another circuit in which two
switches are connected in parallel (side by side) [Figure. 5.2(a)].

 Think about how this circuit will work, and then compare your musings to its
truth table [Figure. 5.2(b)]. In this case, as the light is ON when either a or b are
CLOSED (ON), this circuit could be said to perform a 2-input OR function. 2

 In a limited respect, we might consider that these circuits are making simple
logical decisions; two switches offer four combinations of OPEN (OFF) and
CLOSED (ON), but only certain combinations cause the light to be turned ON .

 FALSE AND TRUE VERSUS OPEN AND CLOSED
 Logic functions such as AND and OR are generic concepts that can be imple-
mented in a variety of ways, including switches as illustrated above, transistors
for use in computers, and even pneumatic devices for deployment in hostile
environments (close to the core of a nuclear reactor, for example). 3

 Thus, instead of drawing circuits using light switches, it is preferable to make
use of more abstract forms of representation. This permits designers to specify
the function of systems with minimal consideration as to their fi nal physical
realization. To facilitate this, special symbols are employed to represent logic
functions, and truth table assignments are specifi ed using the abstract terms

Light
a

y

Power supply

(a) Circuit

b

OPEN
OPEN

CLOSED
CLOSED

a

OPEN
CLOSED

OPEN
CLOSED

b

OFF
ON
ON
ON

y

(b) Truth table

FIGURE 5.2
 Switch representation
of a 2-input OR
function.

 3 I’ve also seen logic functions implemented in some very strange ways, such as falling/not-
falling dominos or marbles interacting with pivoting/not-pivoting strips of wood.

 2 A 3-input version could be constructed by adding a third switch in parallel with the fi rst two.

Primitive Logic Functions CHAPTER 5 51

 false and true (of course, these labels are the reason why “truth tables ” are
so-named). Using the abstract terms false and true is preferable because assign-
ments such as open and closed, on and off, up and down , and so forth may
imply a particular implementation.

 BUF AND NOT FUNCTIONS
 The simplest of all the logic functions are known as BUF and NOT. The sym-
bols, truth tables, and waveform diagrams for these functions are presented in
Figure. 5.3 . The F and T values in the truth tables are shorthand for FALSE and
TRUE, respectively.

 The output of the BUF function has the same value as the input to the func-
tion; if the input is FALSE the output is FALSE, and if the input is TRUE the
output is TRUE. By comparison, the small circle, or bobble , 4 on the output of the
NOT symbol indicates an inverting function; if the input is FALSE the output is
TRUE , and if the input is TRUE the output is FALSE . 5

 Actually, it can be a little tricky to wrap one’s brain around the concept of a
NOT function the fi rst time you see it, 6 so let’s briefl y regress to the world of
our switch examples. Suppose we have a single light switch on the wall and we
tell a user that when the switch is fl icked UP the light will turn ON, and when
the switch is returned to its DOWN position the light will turn OFF. Assume that
the user plays with the switch and determines that we’ve been telling the truth.
This would correspond to a BUF function.

Time

T

F

T

F

a

y

F
T

a

F
T

y

F
T

a

T
F

y

Time

T

F

T

F

a

y

a y

BUF

a y

NOT FIGURE 5.3
 BUF and NOT functions.

 4 Some engineers use the term bubble, others say bobble, and the rest try to avoid mentioning
it at all.
 5 A commonly used alternative name for a NOT function is INV (short for inverter).
 6 This function will make more sense in Chapter 6: Using Transistors to Build Logic Gates, when
we implement it using transistors.

SECTION 1 Fundamentals52

 Now suppose that we introduce the user to another switch. Once again we explain
that the switch being UP corresponds to an ON state, while the switch being
DOWN corresponds to an OFF condition. Let’s assume, however, that we’ve delib-
erately wired (or mounted) the switch the “wrong way round ” such that fl icking it
UP (ON) will turn the light OFF and pressing it DOWN (OFF) will turn the light
ON. In this case, we’ve created the physical equivalent of a NOT function.

 Finally, as a reminder that these abstract functions will eventually have physi-
cal realizations, the waveforms show delays between transitions on the inputs
and corresponding responses at the outputs. The actual values of these delays
depend on the technology used to implement the functions, but it is important
to note that in any physical implementation there will always be some element
of delay.

 “ CONNECT THE NOTS ”
 I was wracking my brain for a cunning title for this tasty tidbit of a topic, when
my wife (Gina the Gorgeous) jokingly suggested “connect the NOTs ” as a play
on the kids ’ game “connect the dots ” (she will be jolly surprised when she even-
tually sees this in print). But we digress … Consider the effect of connecting
two NOT functions in series (one after the other) as shown in Figure. 5.4 .

 The fi rst NOT gate inverts the value from the input, and the second NOT gate
inverts it back again. Thus, the two negations cancel each other out (sort of
like “ two wrongs do make a right ”). The end result is equivalent to that of a BUF
function, except that each NOT contributes an element of delay.

 AND, OR, AND XOR FUNCTIONS
 Three slightly more complex functions are known as AND, OR, and XOR
(Figure. 5.5). 7 The AND and OR representations shown here are the abstract

Time

T

F
T

F

a

w

T
F

yF

T

a

T

F

w

F

T

y

a w

NOT

y

NOT

FIGURE 5.4
 Two NOT functions
connected in series.

 7 In conversation, the term XOR is pronounced “X-OR”; that is, spelling the letter ‘X’
followed by “OR” to rhyme with “door. ”

Primitive Logic Functions CHAPTER 5 53

equivalents of our original switch examples. In the case of the AND, the out-
put is only TRUE if both a and b are TRUE; in the case of the OR, the output is
TRUE if either a or b are TRUE. In fact, the OR should more properly be called
an inclusive-OR, because the TRUE output cases include the case when both
inputs are TRUE. Contrast this with the exclusive-OR, or XOR, where the TRUE
output cases exclude the case when both inputs are TRUE .

 NAND, NOR, AND XNOR FUNCTIONS
 Now consider the effect of appending a NOT function to the output of the
AND function as illustrated in Figure 5.6 .

 This combination of functions occurs frequently in designs. Similarly, the
outputs of the OR and XOR functions are often inverted with NOT functions.
This leads to three more primitive functions called NAND (NOT-AND), NOR

Time

T

F

T

F

T

F

a

b

y

F

F

T

T

y
a

b &

AND

a

F

T

F

T

F

F

F

T

b y

F

F

T

T

a

F

T

F

T

F

T

T

T

b y

F

F

T

T

a

F

T

F

T

F

T

T

F

b y

Time

T

F

T

F

T

F

a

b

y

a

b I
y

OR

Time

T

F

T

F

T

F

a

b

y

a

b
y

I

XOR
FIGURE 5.5
 AND, OR, and XOR
functions.

SECTION 1 Fundamentals54

(NOT-OR), 8 and NXOR (NOT-XOR) as illustrated in Figure 5.7 . In practice, the
NXOR is almost always referred to as an XNOR (exclusive-NOR) . 9

 The bobbles on the outputs of the NAND, NOR, and XNOR symbols indicate
that these are inverting functions. One way to visualize this is that the symbol

Time

T

F

T

F

T

F

a

b

y

F

F

T

T

y
a

b &

NAND

a

F

T

F

T

T

T

T

F

b y

F

F

T

T

a

F

T

F

T

T

F

F

F

b y

F

F

T

T

a

F

T

F

T

T

F

F

T

b y

Time

T

F

T

F

T

F

a

b

y

a

b I
y

NOR

Time

T

F

T

F

T

F

a

b

y

a

b
y

I

XNOR
FIGURE 5.7
 NAND, NOR, and XNOR
functions.

 8 In conversation, the terms NAND and NOR are pronounced as single words to rhyme with
 “ band” and “door, ” respectively.
 9 In conversation, the term XNOR is pronounced “X-NOR”; that is, spelling the letter “X” fol-
lowed by “NOR” to rhyme with “door. ”

yw
a

b &

AND

F

F

T

T

a

F

T

F

T

F

F

F

T

b w

T

T

T

F

y

FIGURE 5.6
 AND function followed by a NOT function.

Primitive Logic Functions CHAPTER 5 55

for the NOT function has been forced back into the preceding symbol until
only its bobble remains visible.

 If the XOR and XNOR functions seem to be a little esoteric, consider a real-
world example from your home, such as two light switches mounted at oppo-
site ends of a hallway controlling the same light. If both of the switches are UP
or DOWN the light will be ON; for any other combination the light will be OFF .
Constructing a truth table reveals a classic example of an XNOR function.

 Of course, if we appended a NOT function to the output of a NAND, we’d end
up back with our original AND function again. Similarly, appending a NOT to
a NOR or an XNOR will result in an OR and XOR, respectively.

 NOT A LOT
 And that’s about it. In reality there are only eight simple functions (BUF, NOT,
AND, NAND, OR, NOR, XOR, and XNOR) from which everything else is con-
structed. In fact, some might argue that there are only seven core functions
because you can construct a BUF out of two NOTs, as was discussed earlier.

 Actually, if you want to go down this path, you can construct all of the above
functions using one or more NAND gates (or one or more NOR gates). For
example, if you connect the two inputs of a NAND gate together, you end up
with a NOT as shown in Figure 5.8 (you can achieve the same effect by con-
necting the two inputs of a NOR gate together).

 As the a and b inputs to the NAND function are connected together, we know
that they have to be carrying identical values, so we end up showing only
two rows in the truth table. We also know that if we invert the output from a
NAND, we end up with an AND. So we could append a NAND confi gured as a
NOT to the output of another NAND to generate an AND (Figure 5.9).

&

a
y

b

NAND acting as NOT

F

T

a

F

T

b

T

F

y

FIGURE 5.8
 Forming a NOT from a NAND.

SECTION 1 Fundamentals56

 In Chapter 9: Boolean Algebra, we’ll discover how to transform functions
formed from ANDs into equivalent functions formed from ORs and vice
versa. Coupled with what we’ve just seen here, this would allow us to build
pretty much anything we desired out of a bunch of 2-input NAND (or NOR)
functions.

 FUNCTIONS VERSUS GATES
 Simple functions such as BUF, NOT, AND, NAND, OR, NOR, XOR, and XNOR
are often known as primitive gates, primitives, logic gates, or simply gates . 10 Strictly
speaking, the term logic function implies an abstract mathematical relationship,
while logic gate implies an underlying physical implementation. In practice,
however, these terms are often used interchangeably.

 More complex functions can be constructed by combining primitive gates in
different ways. A complete design—say a computer—employs a great many
gates connected together to achieve the required result. When the time arrives
to translate the abstract representation into a particular physical implemen-
tation, the logic symbols are converted into appropriate equivalents such as
switches, transistors, or pneumatic valves. Similarly, the FALSE and TRUE logic
values are mapped into appropriate equivalents such as switch positions, volt-
age levels, or air pressures.

 The majority of designs end up being translated into a single technology.
However, one of the advantages of abstract representations is that they allow
designers to implement different portions of a single design in dissimilar tech-
nologies with relative ease. Throughout the remainder of this book we will be
concentrating on electronic implementations.

 10 The reasoning behind using the term gate is that these functions serve to control electronic
signals in much the same way that farmyard gates can be used to control animals.

a

b

w

NAND

&&
y

NAND acting as NOT

F

F

T

T

a

F

T

F

T

T

T

T

F

b w

F

F

F

T

y

FIGURE 5.9
 Forming an AND from
two NANDs.

57

 NMOS, PMOS, AND CMOS
 There are several different families of transistors available to designers and,
although the actual implementations vary, each can be used to construct primi-
tive logic gates. This book concentrates on the enhancement-mode Metal-
Oxide Semiconductor Field-Effect Transistors (MOSFETs) introduced in Chapter 4:
Semiconductors (Diodes and Transistors). There are two reasons for this. First, their
symbols, construction, and operation are easier to understand than are their
Bipolar Junction Transistor (BJT) cousins. Second, enhancement-mode MOSFETs
are the most widely used transistors in the world, fi nding application in both
analog and digital circuits, especially in today’s digital integrated circuits, the
largest of which may literally contain billions of these little scamps.

 Logic gates can be created using only NMOS (n-channel) or only PMOS
(p-channel) MOSFET transistors; however, a popular implementation called
Complementary Metal-Oxide Semiconductor (CMOS) 1 makes use of both NMOS
and PMOS transistors connected in a complementary manner.

 CMOS gates operate from two voltage levels. As we discussed in Chapter 4 ,
these are usually given the labels VDD and VSS. To a large extent, the actual val-
ues of VDD and VSS are irrelevant as long as VDD is suffi ciently more positive than
VSS; purely for the purpose of these discussions (and to make you feel happier),
however, we will assume that VDD is � 5V and VSS is 0V.

 USING 0s AND 1s INSTEAD OF Fs AND Ts
 There are two conventions known as positive logic and negative logic . 2 Under the
positive logic convention used throughout this book, the more positive VDD is

 CHAPTER 6 CHAPTER 6

 Using Transistors to Build
Logic Gates

 1 In conversation, the term CMOS is pronounced “ C-MOS ” ; that is, spelling the letter “ C ”
followed by “ MOS ” to rhyme with “ boss. ”
 2 These conventions are discussed in excruciating detail in Appendix B: Positive Logic Versus
Negative Logic .

SECTION 1 Fundamentals58

assigned the value of logic 1, and the more negative VSS is assigned the value of
logic 0.

 In Chapter 5: Primitive Logic Functions it was noted that truth table assignments can
be specifi ed using the abstract values FALSE and TRUE. However, for reasons that
are more fully examined in Appendix B: Positive Logic Versus Negative Logic, elec-
tronics designers usually represent FALSE (F) and TRUE (T) as 0 and 1, respectively.

 The reason for this is that digital functions can be considered to represent
either logical or arithmetic operations. Often, the same bunch of gates may be
used to perform different operations at different times. Not surprisingly, there-
fore, it is preferable to employ a single consistent nomenclature to cover both
cases, and it is easier to view logical operations in terms of 0s and 1s than it is
to view arithmetic operations in terms of Fs and Ts.

 NOT AND BUF GATES
 The simplest logic function to implement in CMOS is a NOT gate (Figure 6.1).
The small circle, or bobble, on the control input of transistor Tr1, indicates
a PMOS transistor. The bobble is used to indicate that this transistor has an
active-low 3 control, which means that a logic 0 applied to the control input
turns the transistor ON and a logic 1 turns it OFF.

 By comparison, the lack of a bobble on the control input of transistor Tr2 indi-
cates an NMOS transistor. The lack of a bobble says that this transistor has an
active-high 4 control, which means that a logic 1 applied to the control input
turns the transistor ON and a logic 0 turns it OFF.

 Now, assume that we have a piece of wire and we attach one end to input a; we
can connect the other end to VSS (logic 0) or VDD (logic 1) as we wish. When we

VDD (Logic 1)

Tr1

y

Tr2

VSS (Logic 0)

a0 1

1 0

a y

NOT

a y

FIGURE 6.1
 CMOS implementation of a NOT gate.

 3 The “low ” comes from the fact that, under the commonly used positive-logic system, logic 0
is more negative (conceptually “lower ”) than logic 1.
 4 The “high” comes from the fact that, under the commonly used positive-logic system, logic 1
is more positive (conceptually “higher”) than logic 0.

Using Transistors to Build Logic Gates CHAPTER 6 59

connect our wire to VSS (thereby applying a logic 0 to input a), transistor Tr1 is
turned ON, transistor Tr2 is turned OFF, and output y is connected to VDD (logic 1)
via Tr1. Similarly, when we connect our wire to VDD (thereby applying a logic 1
to input a), transistor Tr1 is turned OFF, transistor Tr2 is turned ON, and output
y is connected to VSS (logic 0) via Tr2 .

 Don’t worry if all this seems a bit confusing at fi rst. The main points to remem-
ber are that a logic 0 applied to its control input turns the PMOS transistor ON

and the NMOS transistor OFF, while a logic 1 turns the PMOS transistor OFF

and the NMOS transistor ON. It may help to visualize the NOT gate’s operation
in terms of switches rather than transistors (Figure 6.2).

 Surprisingly, a noninverting BUF gate is more complex than an inverting NOT
gate. This is due to the fact that a BUF gate is constructed from two NOT gates
connected in series (one after the other), which means that it requires four tran-
sistors (Figure 6.3).

 The fi rst NOT gate is formed from transistors Tr1 and Tr2, while the second is
formed from transistors Tr3 and Tr4. In this case, a logic 0 applied to input a is
inverted to a logic 1 on internal signal w, which is subsequently inverted back
again to a logic 0 on output y. Similarly, a logic 1 on a is inverted to a logic 0
on w, which is then inverted back again to a logic 1 on y.

 Around this stage, it is not unreasonable to question the need for BUF gates in
the fi rst place—after all, their logical function could be achieved using a simple

VDD (Logic 1)

Tr1

VSS (Logic 0)

y � 1

Tr2

a � 0

VDD (Logic 1)

Tr1

VSS (Logic 0)

y � 0

Tr2

a � 1

0 1

1 0

a y

NOT

a y

FIGURE 6.2
 NOT gate’s operation
represented using
switches.

VDD (Logic 1)

Tr3

y

Tr4

VSS (Logic 0)

Tr1

a w

Tr2

0 0

1 1

a y

BUF

a y

FIGURE 6.3
 CMOS implementation
of a BUF gate.

SECTION 1 Fundamentals60

piece of wire. But there’s method to our madness, because BUF gates may actu-
ally be used for a number of purposes: for example, to isolate signals, to pro-
vide increased drive capability, or to add an element of delay.

 NAND AND AND GATES
 The implementations of the NOT and BUF gates shown above illustrate an impor-
tant point, which is that it is generally easier to implement an inverting function
than its noninverting equivalent. In the same way that a NOT is easier to imple-
ment than a BUF, a NAND is easier to implement than an AND, and a NOR is
easier to implement than an OR. More signifi cantly, inverting functions typically
require fewer transistors and operate faster than their noninverting counterparts,
which can obviously be an important design consideration. Consider a 2-input
NAND gate, which requires only four transistors (Figure 6.4). 5

 When both a and b are presented with logic 1s, transistors Tr1 and Tr2 are turned
OFF, transistors Tr3 and Tr4 are turned ON, and output y is connected to logic 0 via
Tr3 and Tr4. Any other combination of inputs results in one or both of Tr3 and Tr4
being turned OFF, one or both of Tr1 and Tr2 being turned ON, and output y being
connected to logic 1 via Tr1 and/or Tr2. Once again, it may help to visualize the
gate’s operation in terms of switches rather than transistors (Figure 6.5).

 Now consider an AND gate. This is formed by inverting the output of a NAND
(see Figure 6.4) with a NOT (see Figure 6.1), which means that a 2-input AND
requires six transistors (Figure 6.6). 6

y
a

b &

NAND

0 0

0 1

1 01 0

1 1

a b

1

1

1

0

y

a

b

VDD (Logic 1)

y

VSS (Logic 0)

Tr1 Tr2

Tr3

Tr4FIGURE 6.4
 CMOS implementation
of a 2-input NAND gate.

 5 A 3-input version could be constructed by adding an additional PMOS transistor in paral-
lel with Tr1 and Tr2 , and an additional NMOS transistor in series with Tr3 and Tr4 .
 6 Remember that electronics designers are cunning little rascals with lots of tricks up their
sleeves. In fact, it’s possible to create an AND gate using only one transistor and a resistor
(see the discussions on Pass-Transistor Logic later in this chapter).

Using Transistors to Build Logic Gates CHAPTER 6 61

 NOR AND OR GATES
 A similar story occurs in the case of NOR gates and OR gates. First, consider a
2-input NOR, which requires only four transistors (Figure 6.7). 7

VSS (Logic 0)

VDD (Logic 1)

Tr1

y � 1

Tr2

Tr3

Tr4

VSS (Logic 0)

VDD (Logic 1)

Tr1

y � 1

Tr2

Tr3

Tr4

VSS (Logic 0)

VDD (Logic 1)

Tr1

y � 1

Tr2

a � 0
b � 0

a � 0
b � 1

Tr3

Tr4

VSS (Logic 0)

VDD (Logic 1)

Tr1

y � 0

Tr2

a � 1
b � 1

a � 1
b � 0

Tr3

Tr4

y
a

b &

NAND

0 0

0 1

1 01

1 1

a b

1

1

1

0

y

FIGURE 6.5
 NAND gate’s operation
represented using
switches.

VDD (Logic 1)

Tr5

y

Tr6

VSS (Logic 0)

a
b w&

NAND

y
a

b &

AND

0 0

0 1

1 01

1 1

a b

0

0

0

1

y

FIGURE 6.6
 CMOS implementation
of a 2-input AND gate.

VDD (Logic 1)

Tr2

Tr1

Tr4Tr3

y

VSS (Logic 0)

a

b

y
a

b I

NOR

0 0

0 1

1 0

1 1

a b

1

0

0

0

y

FIGURE 6.7
 CMOS implementation
of a 2-input NOR gate.

 7 A 3-input version could be constructed by adding an additional PMOS transistor in series
with Tr1 and Tr2 , and an additional NMOS transistor in parallel with Tr3 and Tr4 .

SECTION 1 Fundamentals62

 When both a and b are set to logic 0, transistors Tr3 and Tr4 are turned OFF,
transistors Tr1 and Tr2 are turned ON, and output y is connected to logic 1 via
Tr1 and Tr2. Any other combination of inputs results in one or both of Tr1 and
Tr2 being turned OFF, one or both of Tr3 and Tr4 being turned ON, and output y
being connected to logic 0 via Tr3 and/or Tr4. (Refer back to Figure 6.5 , and
then try sketching out your own diagram representing this NOR gate’s opera-
tion in terms of switches rather than transistors.)

 Once again, an OR gate is formed by inverting the output of a NOR with a
NOT, which means that a 2-input OR requires six transistors (Figure 6.8).

 XNOR AND XOR GATES
 The concepts of NAND, AND, NOR, and OR are relatively easy to understand
because they map onto the way we think in everyday life. For example, a tex-
tual equivalent of a NOR could be: “If it’s windy or if it’s raining then I’m not
going out. ”

 By comparison, the concepts of XOR and XNOR can be a little harder to
grasp because we don’t usually consider things in these terms. For example,
a textual equivalent of an XOR could be: “ If it is windy and it’s not raining, or
if it’s not windy and it is raining, then I will go out. ” Although this does make
sense in a strange sort of way, we don’t often fi nd ourselves making deci-
sions in this manner. However, these gates are full of surprises and they fi nd
many uses (see Appendix D: Gray Codes , for example).

 Consider the XOR and XNOR symbols and truth tables shown in Figure 6.9 .
From our earlier discussions in Chapter 5: Primitive Logic Functions, we know that
the output from the XOR will be logic 1 if inputs a and b are presented with com-
plementary values (that is, if a is 0 and b is 1, or vice versa). However, if inputs
a and b are presented with the same values (both 0 or both 1), then the output
from the XOR will be logic 0 [Figure 6.9(a)]. And, of course, the output from an
XNOR is the negated version of the output from an XOR [Figure 6.9(b)].

0 0

0 1

1 01 0

1 1

a b

0

1

1

1

y VDD (Logic 1)

Tr5

y

Tr6

VSS (Logic 0)

a
b wI

NOR

y
a

b I

OR

FIGURE 6.8
 CMOS implementation
of a 2-input OR gate.

FIGURE 6.9
 XOR and XNOR gate symbols
and truth tables.

(a) XOR gate

y
a

b I

0 0

0 1

1 01 0

1 1

a b

0

1

1

0

y

(b) XNOR gate

y
a

b I

0 0

0 1

1 01 0

1 1

a b

1

0

0

1

y

Using Transistors to Build Logic Gates CHAPTER 6 63

 In the case of the XOR, we could state its function verbally as: “ Either a or b,
but not both . ” Now, there are several ways in which we can realize an XOR; for
example, we can easily implement this functionality using a combination of
NOT, AND, and OR gates as illustrated in Figure 6.10 . 8

 Take a few moments to work this out in your mind. The output from the upper
left-hand AND gate will only ever be 1 if a is 1 and b is 0; the output from the
lower left-hand AND gate will only ever be 1 if a is 0 and b is 1; and the output
from the OR gate will only be 1 if at least one of the AND gates is generating a 1.

 Now, in order to implement an XNOR gate, we could use a NOT gate to invert
the output from the OR gate shown in Figure 6.10 . Why would this not be a
good idea? Well, if you cast your mind back to Figure 6.8 , you will recall that
an OR gate (with six transistors) is actually formed from the combination of a
NOR gate (with four transistors) and a NOT gate (with two transistors). Thus,
if we were to add another NOT gate to the output of the OR in Figure 6.10 ,
we’d end up with a NOR gate formed from eight transistors! Thus, it would be
much better to simply replace our OR gate (with six transistors) with a primi-
tive NOR gate (with only four transistors).

 XNOR AND XOR GATES: PASS-TRANSISTOR
IMPLEMENTATIONS
 The 2-input XOR shown in Figure 6.10 requires 22 transistors (two each for the
two NOT gates, six each for the two AND gates, and six more for the OR gate).

&

a AND

y

OR

|

a

b
y

XOR

|

b &

AND

a AND (NOT b)

(NOT a) AND b

FIGURE 6.10
 Implementing a 2-input XOR from NOT, AND, and OR gates.

 8 As we can see from Figure 6.10, there are no such beasts as XOR and XNOR primitive gates,
per se; instead, these functions are constructed from collections of other primitive gates.
Thus, unlike AND, NAND, OR, and NOR gates, there are no such beasts as XNOR or XOR
primitives with more than two inputs. However, equivalent functions with more than two
inputs can be formed by connecting a number of 2-input XOR or XNOR functions together.

SECTION 1 Fundamentals64

And, as we discussed in the previous topic, we could implement a 20-transistor
XNOR function by replacing the 6-transistor OR gate with a 4-transistor NOR gate.

 Now, just to keep the old mental juices fl owing, consider how a 2-input XNOR
can be implemented using only four transistors, as illustrated in Figure 6.11 .

 The NOT gate would be constructed in the standard way using two transistors
as described above, but the XNOR differs from the previous gates in the way
that transistors Tr3 and Tr4 are utilized. First, consider what happens when input
b is presented with a logic 0. In this case, transistor Tr4 is turned OFF, transistor
Tr3 is turned ON, and output y is connected to the output of the NOT gate via
Tr3. Thus, when input b is logic 0, output y is the inverse of the value on input a.
Now consider what happens when input b is presented with a logic 1. In this
case, transistor Tr3 is turned OFF, transistor Tr4 is turned ON, and output y is
connected to input a via Tr4. Thus, when input b is logic 1, output y has the
same value as input a. Therefore, the end result of all these machinations is a
function that satisfi es the requirements of the XNOR truth table.

 The interesting point is that, unlike the other complementary gates, it is not
necessary to use a NOT gate to invert the output of this XNOR to form an XOR
(although we could if we wanted to, of course). A little judicious rearranging of
the components results in a 2-input XOR that also requires only four transis-
tors (Figure 6.12).

a
NOT

y

Tr4

Tr3

b

a

b
y

XNOR

|
0 0

0 1

1 01 0

1 1

a b

1

0

0

1

y

FIGURE 6.11
 Pass-transistor
implementation of a
2-input XNOR.

a

NOT

y

Tr4

Tr3

b

a

b
y

XOR

|
0 0

0 1

1 01 0

1 1

a b

0

1

1

0

y

FIGURE 6.12
 Pass-transistor
implementation of a
2-input XOR.

Using Transistors to Build Logic Gates CHAPTER 6 65

 First, consider what happens when input b is presented with a logic 0. In this
case, transistor Tr4 is turned OFF, transistor Tr3 is turned ON, and output y is
connected to input a via Tr3. Thus, when input b is logic 0, output y has the
same value as input a. Now consider what happens when input b is presented
with a logic 1. In this case, transistor Tr3 is turned OFF, transistor Tr4 is turned
ON, and output y is connected to the output of the NOT gate via Tr4. Thus,
when input b is logic 1, output y is the inverse of the value on input a. Thus, the
end result is a function that satisfi es the requirements of the XOR truth table.

 PASS-TRANSISTOR LOGIC
 In the BUF, NOT, AND, NAND, OR, and NOR gates described earlier (and also
the XOR and XNOR gates formed from NOT, AND, and OR, gates, etc.), the
input signals and internal data signals are used only to drive control (gate) ter-
minals on the transistors. By comparison, in the case of the XOR and XNOR
gates presented in the previous topic, transistors TR3 and TR4 are connected in
such a way that input and internal data signals pass between their data (source
and drain) terminals. This technique, which is known as pass-transistor logic ,
can be attractive in that it minimizes the number of transistors required to
implement a function. However, pass-transistor logic is not necessarily the best
approach because strange and unexpected effects can ensue if you’re not careful
and you don’t know what you’re doing.

 An alternative solution for an XOR is to invert the output of our pass-transistor
XNOR with a regular NOT gate. Similarly, an XNOR can be constructed by invert-
ing the output of our pass-transistor XOR with a NOT. Although these new imple-
mentations each now require six transistors rather than four, they are more robust
because the NOT gates buffer the outputs and provide a higher drive capability.
And, as we previously discussed, XOR and XNOR functions can be constructed
from combinations of the other primitive gates. This increases the transistor
count still further but, once again, it results in more robust solutions.

 Having said all this, pass-transistor logic can be applicable in certain situations
for designers who do know what they’re doing. In the discussions above, it was
noted that it is possible to implement an AND function using a single transis-
tor and a resistor. Similarly, it’s possible to implement an OR function using a
single transistor and a resistor, and to implement XOR and XNOR functions
using only two transistors and a resistor. If you’re feeling brave, try to work
out how to achieve these minimal implementations for yourself (solutions are
given in Appendix F: Pass-Transistor Logic).

This page intentionally left blank

67

 FINGERS, TOES, AND PEBBLES
 The fi rst tools used as aids to calculation were almost certainly man’s own fi n-
gers, and it is not simply a coincidence that the word “ digit ” is used to refer to
a fi nger (or toe) as well as a numerical quantity. As the need to represent larger
numbers grew, early man employed readily available materials for the purpose.
Small stones or pebbles could be used to represent larger numbers than fi ngers
and toes and had the added advantage of being able to easily store intermedi-
ate results for later use. Thus, it is also no coincidence that the word “calculate ”
is derived from the Latin word for pebble.

 BONES WITH NOTCHES
 The oldest objects known to represent numbers are bones with notches carved
into them (Figure 7.1). These bones, which were discovered in Western Europe,
date from the Aurignacian period 20,000 to 30,000 years ago and correspond
to the fi rst appearance of Cro-Magnon man. 1 Of special interest is a wolf’s jaw-
bone more than 20,000 years old with 55 notches in groups of fi ve, which
was discovered in Czechoslovakia in 1937. This is the fi rst evidence of the tally
system, which is still used occasionally to the present day and could therefore
qualify as one of the most enduring of human inventions.

 Also of interest is a piece of bone dating from around 8500 BC, which was dis-
covered in Africa and which appears to have notches representing the prime
numbers 11, 13, 17, and 19. Prime numbers are those that are wholly divis-
ible only by the number one and themselves, so it is not surprising that early
man would have attributed a special signifi cance to them. What is surprising

 CHAPTER 7 CHAPTER 7

 Alternative Number
Systems

 1 The term Cro-Magnon comes from caves of the same name in Southern France, in which the
fi rst skeletons of this race were discovered in 1868.

SECTION 1 Fundamentals68

FIGURE 7.1
 Notches on bones.
(Courtesy Clive “ Max ”
Maxfi eld and Alvin
Brown)

is that someone of that era had the mathe-
matical sophistication to recognize this quite
advanced concept and took the trouble to
write it down—not to mention that prime
numbers would appear to have had little rel-
evance to the everyday problems of the time,
such as gathering food and staying alive.

 TALLY STICKS: THE HIDDEN
DANGERS
 The practice of making marks on things or
cutting notches into them to represent num-
bers has survived to the present day, especially
among schoolchildren making tally marks on
their desks to signify the days of their captivity.
In the not-so-distant past, storekeepers (who

often could not read or write) used a similar technique to keep track of their cus-
tomer’s debts. For example, a baker might make cuts across a stick of wood equal
to the number of loaves in the shopper’s basket. This stick was then split length-
wise, with the baker and the customer each keeping half, so that both could
remember how many loaves were owed for and neither of them could cheat.

 Similarly, the British government used wooden tally sticks until the early 1780s.
These sticks had notches cut into them to record fi nancial transactions and to
act as receipts. Over the course of time, these tally sticks were replaced by paper
records, which left the cellars of the Houses of Parliament full to the brim with
pieces of old wood. Rising to the challenge with the inertia common to govern-
ments around the world, Parliament dithered until 1834 before fi nally getting
around to ordering the destruction of the tally sticks.

 There was some discussion about donating the sticks to the poor as fi rewood;
but wiser heads prevailed, pointing out that the sticks actually represented “top
secret” government transactions. The fact that the majority of the poor couldn’t
read or write and often couldn’t count was obviously of no great signifi cance,
and it was fi nally decreed that the sticks should be burned in the courtyard of
the Houses of Parliament. However, fate is usually more than willing to enter
the stage with a pointed jape—gusting winds caused the fi re to break out of
control and burn the House of Commons to the ground (although they did
manage to save the foundations)!

Alternative Number Systems CHAPTER 7 69

 THE ABACUS
 The fi rst actual calculating mechanism known to us is the abacus, which is
thought to have been invented by the Babylonians sometime between 1000
and 500 BC (although some pundits are of the opinion that it was actually
invented by the Chinese).

 The word abacus comes to us by way of Latin as a mutation of the Greek word
abax. In turn, the Greeks may have adopted the Phoenician word abak, mean-
ing “ sand, ” although some authorities lean toward the Hebrew word abhaq ,
meaning “ dust. ” Irrespective of the source, the original concept referred to a
fl at stone covered with sand (or dust) into which numeric symbols were drawn.
The fi rst abacus was almost certainly based on such a stone, with pebbles being
placed on lines drawn in the sand.

 Over time, the stone was replaced by a wooden frame supporting thin sticks,
braided hair, or leather thongs, onto which clay beads or pebbles with holes
were threaded. A variety of different types of abacus were developed, but the
most popular became those based on the bi-quinary system, which utilizes a
combination of two bases (base-2 and base-5) to represent decimal numbers.
Although the abacus does not qualify as a mechanical calculator, it certainly
stands proud as one of the fi rst mechanical aids to calculation.

 ROMAN NUMERALS
 In the next topic we’re going to introduce the concept of place-value number sys-
tems. In order to understand why these are so effi cacious, let’s fi rst briefl y con-
sider the concept of Roman Numerals, in which I � 1, V � 5, X � 10, L � 50,
C � 100, D � 500, M � 1000, and so forth.

 Using this scheme, XXXV represents 35 (three tens and a fi ve). One problem
with this type of number system is that over time, as a civilization develops,
it tends to become necessary to represent larger and larger quantities. This
means that mathematicians either have to keep on inventing new symbols or
start using lots and lots of their old ones. But the biggest disadvantage of this
approach is that it’s painfully diffi cult to work with (try multiplying CLXXX by
DDCV and it won’t take you long to discover what I mean).

 Actually, it’s easy for us to rest on our laurels and smugly criticize ideas of
the past with the benefi t of hindsight (the one exact science). In fact, Roman
numerals were used extensively in England until the middle of the 17th cen-
tury, and are still used to some extent to this day; for example, the copyright

SECTION 1 Fundamentals70

notice on fi lms and television programs often
indicates the year in Roman numerals!

 DECIMAL (BASE-10)
 The commonly used decimal numbering system is
based on 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
The name decimal comes from the Latin decem ,
meaning “ten.” The symbols used to represent
these digits arrived in Europe around the 13th
century from the Arabs, who in turn borrowed

them from the Hindus (and never gave them back). As the decimal system
is based on 10 digits, it is said to be base-10 or radix-10, where the term radix
comes from the Latin word meaning “root.”

 With the exception of specialist requirements such as computing, base-10 num-
bering systems have been adopted almost universally—this is almost certainly
due to the fact that humans happen to have 10 fi ngers. 2 If mother nature had
dictated six or eight fi ngers on each hand, for example, the outcome would
most probably have been the common usage of base-12 or base-16 number-
ing systems, respectively (see also the discussions on the Duo-Decimal and
Hexadecimal systems).

 The decimal system is a place-value system, which means that the value of a
particular digit depends both on the digit itself and on its position within the
number (Figure 7.2).

 Every column in a place-value number has a “weight ” associated with it, and
each digit is combined with its column’s weight to determine the fi nal value of
the number (Figure 7.3).

Thousands column

Hundreds column

Tens column

Ones column

4 � Four

4 0 � Forty

4 0 0 � Four hundred

4 0 0 � Four thousand0

FIGURE 7.2
 Decimal is a place-
value number system.

� (3 � 1000) (2 � 100) (3 � 10) (4 � 1)

Thousands column

Hundreds column

Tens column

Ones column

4323 � � �

FIGURE 7.3
 Combining digits with
column weights in
decimal.

 2 Including thumbs.

Alternative Number Systems CHAPTER 7 71

10

11

12

.

.

.

.

.

18

19

20

21

22

.

.

.

.

.

98

99

0

1

2

.

.

.

.

.

8

9

100

101

102

.

.

.

.

.

998

999

etc.

FIGURE 7.4
 Counting in decimal.

 Counting in decimal commences at 0 and pro-
gresses up to 9, at which point all of the avail-
able digits have been used. Thus, the next count
causes the fi rst column to be reset to 0 and the
second column to be incremented, resulting in
10. Similarly, when the count reaches 99, the next
count causes the fi rst column to be reset to zero
and the second column to be incremented. But,
as the second column already contains a 9, this
causes it to be reset to 0 and the third column to
be incremented resulting in 100 (Figure 7.4).

 Although base-10 systems are anatomically con-
venient, they have few other advantages to rec-
ommend them. In fact, depending on your point of view, almost any other
base (with the possible exception of nine) would be as good as, or better than,
base-10, which is only wholly divisible by 2 and 5. For many arithmetic opera-
tions, the use of a base that is wholly divisible by many numbers, especially
the smaller values, conveys certain advantages. An educated layman may well
prefer a base-12 system on the basis that 12 is wholly divisible by 2, 3, 4, and
6. For their own esoteric purposes, some mathematicians would ideally prefer
a system with a prime number as a base; for example, base-7 or base-11.

 DUO-DECIMAL (BASE-12)
 Number systems with bases other than 10 have sprouted up like
weeds throughout history. Some cultures made use of duo-deci-
mal (base-12) systems; instead of counting fi ngers they counted
fi nger-joints. Each of our fi ngers has three joints (at least they do
in my branch of the family), so if you use your thumb to point
to the joints of the other fi ngers on the same hand, you can
count one-two-three on the fi rst fi nger, four-fi ve-six on the next,
and so on up to twelve on your little fi nger (Figure 7.5).

 This system is particularly useful if one wishes to count up to 12
while still maintaining a free hand to throw a spear at someone
whom, we may assume, is not a close friend.

 This form of counting may explain why the ancient Sumerians,
Assyrians, and Babylonians divided their days into 12 periods:
six for day and six for night. The lengths of the periods were

3
6

9

12

11
10

8

7

2 5

41

Thumb is used
to point to

relevant joint

FIGURE 7.5
 Using fi nger joints to
count in duo-decimal.

SECTION 1 Fundamentals72

adjusted to the seasons (since the length of daylight compared to nighttime var-
ies throughout the year), but were approximately equal to two of our hours. In
fact, the Chinese use a form of this system to the present day (Figure 7.6).

 If a similar fi nger-joint counting strategy is applied to both hands, the counter
can represent values from 1 through 24 (Figure 7.7). This may explain why the
ancient Egyptians divided their days into 24 periods, which is, in turn, why we
have 24 hours in a day. Strangely enough, an Egyptian hour was only approxi-
mately equal to one of our hours. This was because the Egyptians liked things to
be nice and tidy, so they decided to have 12 hours of daylight and 12 hours of
nighttime. Unfortunately, as the amount of daylight varies throughout the year,
they were obliged to adjust the lengths of their hours according to the seasons.

 One of the methods used by the Egyptians to measure time was the water clock,
or clepsydra, 3 which consisted of a container of water with a small hole in the bot-
tom through which the water escaped. Units of time were marked on the side of
the container, and the length of the units corresponding to day and night could
be adjusted by varying the distance between the markings or by modifying the
shape of the container (by having the top wider than the bottom, for example).

 In addition to their base-12 system, the Egyptians also experimented with a sort-
of base-10 system. In this system, the numbers 1 through 9 were drawn using the
appropriate number of vertical lines; 10 was represented by a circle; 100 was a

11:00 PM 1:00 AM � Hour of the Rat

1:00 AM 3:00 AM � Hour of the Ox

3:00 AM 5:00 AM � Hour of the Tiger

5:00 AM 7:00 AM � Hour of the Hare

7:00 AM 9:00 AM � Hour of the Dragon

9:00 AM 11:00 AM � Hour of the Snake

11:00 AM 1:00 PM � Hour of the Horse

1:00 PM 3:00 PM � Hour of the Ram

3:00 PM 5:00 PM � Hour of the Monkey

5:00 PM 7:00 PM � Hour of the Cock

7:00 PM 9:00 PM � Hour of the Dog

9:00 PM 11:00 PM � Hour of the Boar

FIGURE 7.6
 The Chinese 12-hour day.

 3 The term clepsydra is derived from the Greek klepto, meaning “thief,” and hydro, meaning
 “ water. ” Thus, clepsydra literally means “water thief. ”

3
6

9

12

11
10

8

7

2 5

41

15
18

21

24

23
22

20

19

1417

16 13

FIGURE 7.7
 Using fi nger joints to count to 24.

Alternative Number Systems CHAPTER 7 73

coiled rope; 1000 a lotus blossom; 10,000 a pointing fi nger; 100,000 a tadpole;
and 1,000,000 a picture of a man with his arms spread wide in amazement.
(This is similar in concept to the Roman Numerals we discussed earlier.)

 Thus, in order to represent a number like 2,327,685, they would have been obliged
to use pictures of two amazed men, three tadpoles, two pointing fi ngers, seven
lotus blossoms, six coiled ropes, eight circles, and fi ve vertical lines. It requires very
few attempts to divide tadpoles and lotus blossoms by pointing fi ngers and coiled
ropes to appreciate why this scheme didn’t exactly take the world by storm.

 SEXAGESIMAL (BASE-60)
 Previously we noted that, for many arithmetic operations, the use of a number
system whose base is wholly divisible by many numbers—especially the smaller
values—conveys certain advantages. And so we come to the Babylonians, who
were famous for their astrological observations and calculations, and who used
a sexagesimal (base-60) numbering system.

 While there is no defi nite proof as to the origins of the sexagesimal base, it’s pos-
sible that this was an extension of the fi nger-joint counting schemes discussed
above (as illustrated in Figure 7.8).

5 � 12

4 � 12

3 � 12

2 � 12

1 � 12

3
6

9

12

11
10

8

7

2 5

41

FIGURE 7.8
 Using fi ngers and fi nger joints to count to 60.

SECTION 1 Fundamentals74

 In this scenario, the fi nger joints of the left hand are still used to represent the
values 1 through 12; however, instead of continuing directly with the fi nger
joints of the right hand, the thumb and fi ngers on the right hand are used to
keep track of each count of 12. When all of the right hand digits are extended
the count is 60 (5 � 12 � 60).

 Although 60 may appear to be a large value to have as a base, it does convey
certain advantages. Sixty is the smallest number that can be wholly divided by
each of the numbers 2 through 6; in fact, 60 can be wholly divided by 2, 3,
4, 5, 6, 10, 12, 15, 20, and 30. (Just to increase their fun, in addition to using
base-60 the Babylonians also made use of 6 and 10 as subbases.)

 The Babylonians ’ sexagesimal system, which fi rst appeared around 1900 to
1800 BC, is also credited with being the fi rst known place-value number system,
in which the value of a particular digit depends on both the digit itself and its
position within the number. This was an extremely important development,
because—prior to place-value systems—people were obliged to use different sym-
bols to represent different powers of a base. As was illustrated by the Egyptian and
Roman systems we mentioned earlier, having unique symbols for 10, 100, 1000,
and so forth makes even rudimentary calculations very diffi cult to perform.

 And, before we move on, we should note that although the Babylonians ’ base-
60 system may seem a tad unwieldy to us, one cannot help but feel that it was
an improvement on the Sumerians who came before them. The reason I say
this is that the Sumerians had three distinct counting systems to keep track of
land, produce, and animals, and—on the basis that these were three different
 “ things”—they used a completely different set of symbols for each system!

 THE CONCEPTS OF ZERO AND NEGATIVE NUMBERS
 Interestingly enough, the idea of numbers like one, two, and three developed a
long time before the concept of zero. This was largely because the requirement
for a number “zero” was less than obvious in the context of the calculations
that early men and women were trying to perform.

 For example, suppose that a young man’s father had instructed him to stroll up
to the top fi eld to count their herd of goats and, on arriving, the lad discovered
the gate wide open and no goats to be seen.

 First, the lad’s task on the counting front had effectively been done for him.
Second, on returning to his aged parent, he probably wouldn’t feel the need to
say: “Oh revered one, I regret to inform you that the result of my calculations leads me

Alternative Number Systems CHAPTER 7 75

to believe that we are the proud possessors of zero goats. ” Instead, he would be far
more inclined to proclaim something along the lines of: “Father, some drongo left
the gate open and all of our goats have wandered off into the sunset. ”

 As a result, in the original Babylonian system, for example, a zero was simply
represented by a space; the decimal equivalent would be as shown in Figure 7.9 .

 It is easy to see how this can lead to a certain amount of confusion, especially
when attempting to portray multiple zeros next to each other. The problems
can only be exacerbated if one is using a sexagesimal system and writing on
tablets of damp clay in a thunderstorm.

 After more than 1500 years of potentially inaccurate calculations, the
Babylonians fi nally began to use a special sign for zero. Some say that this
concept, which fi rst appeared around 300 BC, was one of the most signifi cant
inventions in the history of mathematics. However, the Babylonians only used
the zero symbol as a placeholder to separate digits—they didn’t have the con-
cept of zero as an actual value. If we were to use the “Δ ” character to represent
the Babylonian placeholder, the decimal equivalent to the clay tablet account-
ing records of the time would read something like that shown in Figure 7.10 .

 The last entry in the “Fish Remaining ” column is particularly revealing. Because
the Babylonian zero was only a placeholder and not a value, the accounting
records had to say “ No fi sh left ” rather than “ Δ fi sh. ”

 In fact, the use of zero as an actual value, along with the concept of negative num-
bers, fi rst appeared in India around 600 AD. Although negative numbers appear
reasonably obvious to us today, they were not well understood until modern
times. As recently as the 18th century, the great Swiss mathematician Leonhard
Euler (1707–1783; pronounced “ oiler ” in America) believed that negative num-
bers were greater than infi nity, and it was common practice to ignore any negative
results returned by equations on the assumption that they were meaningless!

“126904” would be written as “1269 4”

“102056” would be written as “1 2 56”

“160014” would be written as “16 14”

FIGURE 7.9
Representing zeros using spaces.

Original Amount – Fish Distributed � Fish Remaining

1Δ52 fish – 45 fish to Gina � 1ΔΔ7 fish

– 2Δ fish to Max � 987 fish

– 4Δ7 fish to Joseph � 58Δ fish

– 176 fish to Drew � 4Δ4 fish

– 4Δ4 fish to Henry � “No fish left”

FIGURE 7.10
Representing zeros using a placeholder symbol.

SECTION 1 Fundamentals76

 VIGESIMAL (BASE-20)
 The Mayans, Aztecs, and Celts developed vigesimal (base-20) systems by count-
ing using both fi ngers and toes. The Eskimos of Greenland, the Tamanas of
Venezuela, and the Ainu of northern Japan are three of the many other groups
of people who also make use of vigesimal systems. For example, to say “fi fty-
three, ” the Greenland Eskimos would use the expression “ Inup pinga-jugsane
arkanek-pingasut,” which translates as “ Of the third man, three on the fi rst foot. ” 4
This means that the fi rst two men contribute 20 each (10 fi ngers and 10 toes),
and the third man contributes 13 (10 fi ngers and 3 toes).

 JOBS ABOUND FOR TIME-TRAVELERS
 To this day, we bear the legacies of almost every number system our ancestors
experimented with. From the duo-decimal systems we have 24 hours in a day
(2 � 12), 12 inches in a foot, and special words such as dozen (meaning 12)
and gross (meaning 12 � 12 � 144). Similarly, the Chinese have 12 hours in a
day (each equal to two of our hours) and 24 seasons in a year (each approxi-
mately equal to two of our weeks).

 From the sexagesimal system we have 60 seconds in a minute, 60 minutes in
an hour, and 360 degrees in a circle, where 360 degrees is derived from the
product of the Babylonian’s main base (60) and their subbase (6); that is,
60 � 6 � 360. And from the vigesimal systems we have special words like
score (meaning 20), as in Lincoln’s famous Gettysburg Address, in which
he proclaimed: “ Four score and seven years ago, our fathers brought forth on this
continent a new nation … “ This all serves to illustrate that number systems with
bases other than 10 are not only possible, but positively abound throughout
history.

 Because we’re extremely familiar with using numbers, we tend to forget the tre-
mendous amounts of mental effort that have been expended to raise us to our
present level of understanding. In the days of yore when few people knew how
to count, anyone who was capable of performing relatively rudimentary math-
ematical operations could easily achieve a position of power. For example, if
you could predict an eclipse (especially one that actually came to pass) you
were obviously someone to be reckoned with.

 Similarly, if you were a warrior chieftain, it would be advantageous to know how
many fi ghting men and women you had at your command, and the person who

 4 George Ifrah: From One to Zero (A Universal History of Numbers).

Alternative Number Systems CHAPTER 7 77

could provide you with this information would obviously rank highly on your
summer-solstice card list. 5 So, should you ever be presented with the opportunity
to travel back through time, you can bask in the glow of the knowledge that there
are numerous job opportunities awaiting your arrival. But we digress …

 QUINARY (BASE FIVE)
 One system that is relatively easy to understand is quinary (base-5), which uses
the digits 0, 1, 2, 3, and 4. This system is particularly interesting in that a qui-
nary fi nger-counting scheme is still in use today by merchants in the Indian
state of Maharashtra, near Bombay.

 As with any place-value system, each column in a quinary number has a weight
associated with it, where the weights are derived from the base. Each digit is
combined with its column’s weight to determine the fi nal value of the number
(Figure 7.11).

 5 You wouldn’t have a Christmas card list, because the concept of Christmas cards wasn’t
invented until 1843.

One hundred and twenty-fives column

Twenty-fives column

Fives column

Ones column

45323 � (3 � 125)
� 44410

(2 � 25) (3 � 5) (4 � 1)� � �

FIGURE 7.11
 Combining digits with
column weights in
quinary.

 When using systems with bases other than 10, subscripts are used to indicate
the relevant base; for example, 3234 5 � 444 10 (3234 QUINARY � 444 DECIMAL). By
convention, any value without a subscript is assumed to be in decimal.

 Counting in quinary commences at 0 and progresses up to 4 5, at which point
all the available digits have been used. Thus, the next count causes the fi rst col-
umn to be reset to 0 and the second column to be incremented, resulting in
10 5. Similarly, when the count reaches 44 5, the next count causes the fi rst col-
umn to be reset to zero and the second column to be incremented. But, as the
second column already contains a 4, this causes it to be reset to 0 and the third
column to be incremented resulting in 100 5 (Figure 7.12).

SECTION 1 Fundamentals78

 BINARY (BASE-2)
 Digital systems are constructed out of logic gates that can only represent two
states; thus, computers are obliged to make use of a number system compris-
ing only two digits. Base-2 number systems are called binary and use the digits
0 and 1. As usual, each column in a binary number has a weight derived from
the base, and each digit is combined with its column’s weight to determine
the fi nal value of the number (Figure 7.13). Once again, subscripts are used to
indicate the relevant base; for example, 10110 2 � 22 10 (10110 BINARY � 22 DECIMAL).

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

05

15

25

35

45

105

115

125

135

145

(10)

(11)

(12)

(22)

(23)

(24)

205

215

225

.

.

.

.

425

435

445

(25)

(26)

(27)

(122)

(123)

(124)

1005

1015

1025

.

.

.

.

4425

4435

4445

(125)

(126)

(127)

(622)

(623)

(624)

10005

10015

10025

.

.

.

.

44425

44435

44445

etc.

FIGURE 7.12
Counting in quinary (values shown in parentheses are decimal equivalents) .

1 0 1 1 02

Sixteens column
Eights column
Fours column
Twos column
Ones column

� (1 � 16)
� 2210

(0 � 8) (1 � 4) (1 � 2) (0 � 1)� � � �

FIGURE 7.13
 Combining digits with
column weights in
binary.

 Sometime in the late 1940s, the American chemist-turned-topologist-turned-
statistician John Wilder Tukey (1915–2000) realized that computers and the
binary number system were destined to become important. In addition to
coining the word software, Tukey decided that saying “binary digit ” was a bit of
a mouthful, so he started to look for an alternative. He considered a variety of

Alternative Number Systems CHAPTER 7 79

options like binit and bigit, but he eventually settled on bit, which is elegant in
its simplicity and is used to this day.

 Based on this, the binary value 10110 2 would be said to be 5 bits wide.
Additionally, a group of 4 bits is known as a nybble (sometimes called a nibble),
and a group of 8 bits is known as a byte. The idea that “ two nybbles make a byte ”
is in the way of being an engineer’s idea of a joke, which shows that they do
have a sense of humor (it’s just not a particularly sophisticated one). 6

 Counting in binary commences
at 0 and rather quickly pro-
gresses up to 1 2, at which point
all the available digits have been
used. Thus, the next count causes
the fi rst column to be reset to 0
and the second column to be
incremented, resulting in 10 2 .
Similarly, when the count reaches
11 2, the next count causes the fi rst
column to be reset to zero and
the second column to be incre-
mented. But, as the second column already contains a 1, this causes it to be reset
to 0 and the third column to be incremented resulting in 100 2 (Figure 7.14).

 Although binary mathematics is fairly simple, humans tend to fi nd it diffi cult at
fi rst because the numbers are inclined to be long and laborious to manipulate.
For example, the binary value 11010011 2 is relatively diffi cult to conceptualize,
while its decimal equivalent of 211 is comparatively easy. On the other hand,
working in binary has its advantages. For example, if you can remember …

 0 � 0 � 0
 0 � 1 � 0
 1 � 0 � 0
 1 � 1 � 1

 … then you’ve just memorized the entire binary multiplication table!

 6 Continuing the theme, there have been sporadic attempts to construct terms for bit-groups of
other sizes; for example, tayste or crumb for a 2-bit group; playte or chawmp for a 16-bit group;
dynner or gawble for a 32-bit group; and tayble for a 64-bit group. But you can only take a joke
so far, and using anything other than the standard terms nybble and byte is extremely rare.
Having said this, the term word is commonly used as discussed in Chapter 15: Memory ICs .

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

02

12

102

112

1002

1012

1102

1112

(8)

(9)

(10)

(13)

(14)

(15)

10002

10012

10102

.

.

11012

11102

11112

(16)

(17)

(18)

(29)

(30)

(31)

100002

100012

100102

.

.

111012

111102

111112

etc.

FIGURE 7.14
 Counting in binary
(values shown in
parentheses are
decimal equivalents) .

SECTION 1 Fundamentals80

 OCTAL (BASE-8) AND HEXADECIMAL (BASE-16)
 Any number system having a base that is a power of two (2, 4, 8, 16, 32, etc.)
can be easily mapped into its binary equivalent, and vice versa. For this reason,
electronics engineers typically make use of either the octal (base-8) or hexadeci-
mal (base-16) systems.

 As a base-8 system, octal requires eight individual symbols to represent all of its
digits. This isn’t a problem because we can simply use the symbols 0 through 7
that we know and love so well. In the case of the base-16 hexadecimal system,
however, we require 16 individual symbols to represent all of the digits. This
does pose something of a problem because there are only 10 Hindu-Arabic
symbols available (0 through 9). One solution would be to create some new
symbols, but some doubting Thomases (and Thomasinas) regard this as less
than optimal because it would necessitate the modifi cation of existing type-
writers and computer keyboards. As an alternative, the fi rst six letters of the
alphabet are brought into play (Figure 7.15).

Hexadecimal

Decimal

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 7.15
 The 16 hexadecimal digits.

 The rules for counting in octal and hexadecimal are the same as for any other
place-value system—when all the digits in a column are exhausted, the next count
sets that column to zero and increments the column to the left (Figure 7.16).

 Although not strictly necessary, binary, octal, and hexadecimal numbers are
often prefi xed by leading zeros to pad them to whatever width is required. This
padding is usually performed to give some indication as to the physical num-
ber of bits used to represent the various values within a computer.

 Each octal digit can be directly mapped onto three binary digits, and each hexa-
decimal digit can be directly mapped onto four binary digits (Figure 7.17).

 Similarly, it’s easy to convert a binary number such as 0000111100101010 2 into its
hexadecimal equivalent. All we have to do is to split the binary value into 4-bit
nibbles, and to then map each nybble to its corresponding hexadecimal digit.

 In the original digital computers, data paths were often 9 bits, 12 bits, 18 bits,
or 24 bits wide, which provides one reason for the original popularity of the

Alternative Number Systems CHAPTER 7 81

octal system. Due to the fact that each octal digit maps directly to three binary
bits, these data-path values were easily represented in octal. More recently, digi-
tal computers have standardized on data-path widths that are integer multiples
of 8 bits; for example, 8 bits, 16 bits, 32 bits, 64 bits, and so forth. Because
each hexadecimal digit maps directly to four binary bits, these data-path values
are more easily represented in hexadecimal. This may explain the decline in
popularity of the octal system and the corresponding rise in popularity of the
hexadecimal system.

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
:

etc.

Binary
00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
00010010

:
etc.

Octal
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022

:
etc.

Hexadecimal
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
:

etc.

FIGURE 7.16
 Counting in octal and hexadecimal.

0F2A16

00002 11112 00102 10102

388210

Octal Hexadecimal

Binary Binary

7 4 5 28

1112 1002 1012 0102

Decimal

FIGURE 7.17
 Mapping octal and hexadecimal to binary.

SECTION 1 Fundamentals82

 WAY BACK IN THE MISTS OF TIME
 With regard to the previous topic and as an additional nugget of trivia, the term
tetrapod refers to an animal that has four limbs, along with hips and shoulders
and fi ngers and toes. In the mid-1980s, paleontologists discovered Acanthostega
who, at approximately 350 million years old, is one of the most primitive tet-
rapods known—so primitive in fact, that these creatures still lived exclusively
in water and had not yet ventured onto land.

 After the dinosaurs (who were also tetrapods) exited the stage, humans were
one branch of the tetrapod tree that eventually inherited the earth (along with
hippopotami, hedgehogs, aardvarks, frogs … and all of the other vertebrates).
Ultimately, we’re all descended from Acanthostega or one of her cousins. The point
is that Acanthostega had eight fully evolved fi ngers on each hand (Figure 7.18).

FIGURE 7.18
 The fi rst tetrapods had eight fi ngers on each hand. (Courtesy Clive “ Max ” Maxfi eld and Alvin Brown)

 7 As another point of interest, the Irish hero Cuchulain was reported as having seven fi ngers
on each hand (but this would have been no help in computing whatsoever).

 So … if evolution hadn’t taken a slight detour, we’d probably have ended up
using a base-16 numbering system (which would have been jolly handy when
we fi nally got around to inventing computers, let me tell you). 7

 REPRESENTING NUMBERS USING POWERS
 An alternative way of representing numbers is by means of powers; for example,
10 3, where 10 is the base value and the superscripted 3 is known as the power

Alternative Number Systems CHAPTER 7 83

 8 Rather than talking about using powers, some mathematicians prefer to refer to this type of
representation as an exponential form.

160 1 � 116 110

161 16 �

�

�1016 1610

162 16 � 16 � 10016 � 25610

163 16 � 16 � 16 �

�

�

�

� 100016 � 409610

Hexadecimal (Base-16)

80 1 � 18 110

81 8 �

�

�108 810

82 8 � 8 � 1008 � 6410

83 8 � 8 � 8 �

�

�

�

� 10008 � 51210

Octal (Base-8)

20 1 � 12 110

21 2 �

�

�102 210

22 2 � 2 � 1002 � 410

23 2 � 2 � 2 �

�

�

�

� 10002 � 810

Binary (Base-2)

100 1 � 110

101 10 � 1010

102 10 � 10 � 10010

103 10 � 10 � 10 �

�

�

�

� 100010

Decimal (Base-10)

FIGURE 7.19
 Representing numbers using powers.

or exponent. 8 We read 10 3 as “ ten to the power of three. ” The power specifi es how
many times the base value must be multiplied by itself; thus, 10 3 represents
10 � 10 � 10. Any value can be used as a base (Figure 7.19).

 Any base to the power of one is equal to itself; for example, 8 1 � 8. Strictly
speaking, a power of zero is not part of the series, but by convention, any base
to the power of zero equals one; for example, 8 0 � 1. Powers provide a conve-
nient way to represent column-weights in place-value systems, as illustrated in
 Figures. 7.20, 7.21, and 7.22 .

SECTION 1 Fundamentals84

 LUCKY AND UNLUCKY NUMBERS
 Apropos of nothing at all, man has been interested in the properties of odd
numbers since antiquity, often ascribing mystical and magical properties to
them, for example, “lucky seven ” and “unlucky thirteen. ” As Pliny the Elder
(23–79 AD) is reported to have said, “ Why is it that we entertain the belief that for
every purpose odd numbers are the most effectual? ”

1 11 0 02

24 � Sixteens column
23 � Eights column
22 � Fours column
21 � Twos column
20 � Ones column

� (1 � 24) � (0 � 23) � (1 � 22) � (1 � 21) � (0 � 10)

� 16 � � �

� 2210

0 4 2 � 0

Binary (Base-2)

FIGURE 7.21
 Using powers to
represent column
weights in binary.

 A16 2 F0

163 � Four thousand
ninety-sixes column

162 � Two hundred
fifty-sixes column

161 � Sixteens column

160 � Ones column

� (0 � 163) � (F � 162) � (2 � 161) � (A � 160)

� 0 � � �

� 388210

3840 32 10

Hexadecimal (Base-16)

FIGURE 7.22
 Using powers to
represent column
weights in
hexadecimal.

� (3 � 103) � (2 � 102) � (3 � 101) � (4 � 100)

� 3000 � � �

� 3234

323 4

103 � Thousands column Decimal (Base-10)

102 � Hundreds column
101 � Tens column
100 � Ones column

200 30 4

FIGURE 7.20
 Using powers to
represent column
weights in decimal.

Alternative Number Systems CHAPTER 7 85

 10 Actually, if the truth were told, it’s really not too diffi cult to generate and detect three volt-
age levels using modern components. The problem is that you can’t achieve this without
using so many transistors that any advantages of using a tertiary system are lost.
 11 Boolean Algebra is introduced in Chapter 9: Boolean Algebra .

 9 A tertiary digit is known as a trit .

 TERTIARY LOGIC
 And fi nally, for reasons that have become a little involved, communications
theory tells us that optimal data transfer rates can be achieved if each data
element represents three states (see Box). Now engineers wouldn’t be the guys and
gals they are if they weren’t prepared to accept a challenge, and some experi-
ments have been performed with tertiary logic. This refers to logic gates that are
based on three distinct voltage levels. In this case, the three voltages are used to
represent the tertiary (base-3) values of 0, 1, and 2, and their logical equivalents
FALSE, TRUE, and MAYBE. 9

 However, while it’s relatively easy to use transistors to generate two distinct
voltage levels, it’s harder to generate a consistent intermediate voltage that can
represent a third value. Similarly, while it’s relatively easy to use transistors to
interpret (detect) two voltage levels, it’s harder to interpret a third, intermedi-
ate value. 10

 Additionally, creating and using an equivalent to Boolean Algebra 11 that works
with the three logic states FALSE, TRUE, and MAYBE is enough to make even
the strongest among us quail. Thankfully, tertiary logic is currently of academic
interest only (otherwise this book might have been substantially longer). Still,
there’s an old saying: “ What goes around comes around, ” and it’s not beyond the
realm of possibility that tertiary logic (or an even bigger relative) will rear its
ugly head sometime in the future.

 In this context, the term “ data ” refers to numerical, logical, or other digital information

presented in a form suitable for processing by an electronic system such as a digital

computer.

 Actually, “ data ” is the plural of the Latin datum, meaning “ something given. ” The plural

usage is still common, especially among scientists, so it’s not unusual to see expressions

like “ These data are … ”

 However, it is becoming increasingly common to use “ data ” to refer to a singular group

entity such as information. Thus, an expression like “ This data is … ” would also be

acceptable to a modern audience.

This page intentionally left blank

87

 BEFORE WE START . . .
 Because digital computers are constructed from logic gates that can represent
only two states, they are obliged to make use of the binary (base-2) number sys-
tem with its two digits: 0 and 1 (see Chapter 7: Alternative Numbering Systems ,
for more details on binary).

 Unlike calculations on paper where both decimal and binary numbers can be
of any size—limited only by the size of your paper, the endurance of your pen-
cil, and your stamina—the numbers manipulated within a computer have to
be mapped onto a physical system of logic gates and wires. Thus, the maxi-
mum value of a number inside a computer is dictated by the width of its data
path; that is, the number of bits used to represent that number. 1

 UNSIGNED BINARY NUMBERS
 As their name might suggest, unsigned binary numbers don’t have the concept of a sign
(plus or minus), which means they can be used to represent only positive values.
Consider the range of numbers that can be represented using 8 bits (Figure 8.1).

 Each “ x ” character represents a single bit; the right-hand bit is known as the Least
Signifi cant Bit (LSB) because it represents the smallest value. Similarly, the left hand
bit is known as the Most Signifi cant Bit (MSB) because it represents the largest value.

 In computing, it is usual to commence indexing things from zero, so the least
signifi cant bit is referred to as bit 0, and the most signifi cant bit (of an 8-bit
value) is referred to as bit 7. Every bit can be individually assigned a value of

 CHAPTER 8 CHAPTER 8

 Binary Arithmetic

 1 Actually, this isn’t strictly true, because there are tricks we can use to represent large num-
bers by splitting them into smaller “chunks ” and reusing the same bits over and over again,
but that’s beyond the scope of what we’re looking at here.

SECTION 1 Fundamentals88

0 or 1, so a group of 8 bits can be assigned
28 � 2 � 2 � 2 � 2 � 2 � 2 � 2 � 2
 � 256 unique combinations of 0s and
1s. This means that an 8-bit unsigned
binary number can be used to represent
values in the range 0 10 through �255 10 .

 ADDING UNSIGNED
BINARY NUMBERS
 Two unsigned binary numbers may be
added together using a process identical
to that used for decimal addition. First,
the two least signifi cant bits are added
together to give a sum and, possibly, a
carry-out to the next stage. This process
is repeated for the remaining bits, pro-
gressing towards the most signifi cant.

For each of the remaining bits, there may be a carry-in from the previous stage
and a carry-out to the next stage. To fully illustrate this process, consider the
step-by-step addition of two 8-bit binary numbers, as illustrated in Figure 8.2 .

MSB LSBx x x x x x x x

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0

0

1

1

1 0

0

1

0

1

0

�

�

�

�

�

010

27 � 128’s column � bit 7
26 � 64’s column � bit 6
25 � 32’s column � bit 5
24 � 16’s column � bit 4
23 � 8’s column � bit 3
22 � 4’s column � bit 2
21 � 2’s column � bit 1
20 � 1’s column � bit 0

110

210

310

410

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

0

1

1 1

1

0

1

�

�

25410

� 25310

25510

·
·
·

FIGURE 8.1
 Unsigned binary
numbers.

0 0 1 1 1 0

0

(a) Bit 0, 1 � 0 � 12

� 0 0 1 1 0

0 1

1 0

� 1

0 0 1 1 1 0

0

(c) Bit 2, 0 � 0 � 02

� 0 0 1 1 0

0

0 1

1

1

0

� 1

0 0 1 1 1 0

0

(e) Bit 4, 1 � 1 � carry_in � 112

� 0 01 11

11

1 0

1 0 0

0 1

1 0

� 11

1 1 1

0 0 1 1 1 0

0

(g) Bit 6, 0 � 0 � carry_in � 12

� 0 0 1 1 0

0 1

1 0

� 1100101 11001010

0 0 1 1 1 0

0

(b) Bit 1, 0 � 1 � 12

� 0 0 1 1 0

0 1

1 0

� 11

0 0 1 1 1 0

0

(d) Bit 3, 1 � 1 � 102

(h) Bit 7, 0 � 0 � 02

� 0 0 1 0

0 1

1 0

� 1100

0 0 1 1 1 0

0

(f) Bit 5, 1 � 0 � carry_in � 102

� 0 101 1 1

1 1 1

1 0

0 1

1 0

� 110010

0 0 1 1 1 0

0� 0 0 1 1 0

0 1

1 0

� 11

5710

2610�

� 8310FIGURE 8.2
 Binary addition.

Binary Arithmetic CHAPTER 8 89

 We commence with the least signifi cant bits in step (a), 1 � 0 � 1. In step
(b) we see 0 � 1 � 1, followed by 0 � 0 � 0 in step (c). The fi rst carry-out
occurs in step (d), where 1 � 1 � 2 (that’s 1 2 � 1 2 � 10 2 in binary); thus, in
this instance, the sum is 0 and there is a carry-out of 1 to the next stage.

 The second carry-out occurs in step (e), where the carry-in from the previous
stage results in 1 � 1 � 1 � 3 (that’s 1 2 � 1 2 � 1 2 � 11 2 in binary); thus, in this
instance, the sum is 1 and there is a carry-out of 1 to the next stage. The third
and fi nal carry-out occurs in step (f), and it’s plain sailing from there on in.

 NINES ’ AND TEN’S COMPLEMENTS
 There are two forms of complement associated with every number system, the
radix complement and the diminished radix complement, where the term radix
refers to the base of the number system. Under the decimal (base-10) system,
the radix complement is also known as the ten’s complement and the dimin-
ished radix complement is known as the nines ’ complement .

 There’s a lot of confusion in this area: should one say nines , nine’s , or nines ’ complement ?

Similarly, should one say tens , ten’s , or tens ’ complement ? The problem is that you can

run across all of these variants.

 Some folks recommend using the placement of the apostrophe to distinguish between the

radix complement and the diminished radix complement. In this usage, for example, the

term three’s complement would refer to the radix complement of a value in base-3, while

the term threes ’ complement would indicate diminished radix complement of a value in

base-4.

 Other folks (if they’ve thought about it at all) are of the view that the distinction is not

important when the radix is apparent, which is nearly always the case. Thus, many writers

use nine’s complement and ten’s complement [or one’s complement and two’s complement

in the case of the binary (base-2) equivalents]. In fact, many style manuals leave out the

apostrophe completely, recommending nines complement and tens complement (or ones

complement and twos complement in binary).

 First, let’s consider a decimal subtraction performed using the nines ’ comple-
ment technique (Figure 8.3).

 The standard way of performing the operation would be to subtract the sub-
trahend (283) from the minuend (647), which, as in this example, may require
the use of one or more borrow operations. To perform the equivalent operation
using a nines ’ complement approach, each of the digits of the subtrahend is

SECTION 1 Fundamentals90

fi rst subtracted from a 9. The resulting nines ’ complement value is added to the
minuend, and then an end-around-carry operation is performed. The advantage
of the nines ’ complement technique is that it is never necessary to perform a
borrow operation. 2

 Now consider the same subtraction performed using the ten’s complement
technique (Figure 8.4).

9

Nines’ complement equivalentStandard subtraction

9 9
2� 8 3
7� 1

Take nines’
complement

6

6 4 7
2� 8 3
3� 6 4

6 4 7
7

1
1� 6

3 6

End-
around-
carry

4
1

3� 6

Add nines’
complement to minuend

3

FIGURE 8.3
 Nines ’ complement decimal subtraction.

Ten’s complement equivalentStandard subtraction

0 0 0
2

1
8 3

7

�

� 1

Take ten’s
complement

7

6 4 7
2� 8 3

3� 6 4

6 4 7
7

1

1� 7

3 6

Drop
any
carry4

3� 6

Add ten’s
complement to minuend

4

FIGURE 8.4
 Ten’s complement decimal subtraction.

 2 The fact that one doesn’t have to perform any borrow operations when using nines ’ com-
plements made this technique extremely popular in the days of yore when the math skills
of the general populace weren’t particularly high.

 The advantage of the ten’s complement approach is that it is not necessary to per-
form an end-around-carry; any carry-out resulting from the addition of the most
signifi cant digits is simply dropped from the fi nal result. The disadvantage is that,
during the process of creating the ten’s complement, it is necessary to perform a
borrow operation for every nonzero digit in the subtrahend. This problem could be
solved by fi rst taking the nines ’ complement of the subtrahend, adding one to the
result, and then performing the remaining operations as for the ten’s complement.

Binary Arithmetic CHAPTER 8 91

 SUBTRACTING UNSIGNED BINARY NUMBERS
 Unsigned binary numbers may be subtracted from each other using an identi-
cal process to that used for decimal subtraction. However, for reasons of effi -
ciency, computers rarely perform subtractions in this manner; instead, these
operations are typically performed by means of complement techniques .

 In the case of binary (base-2) numbers, the radix complement is known as the
two’s complement and the diminished radix complement is known as the ones ’
complement. First, consider a binary subtraction performed using the ones ’ com-
plement technique (Figure 8.5).

5710 � 3010 � 2710

1 1 1 1 1 1

0� 0 0 1 1

1 1 1 0 0

1

0

1

1

0

1

0

� 1

0 0 1 1 1 0

1� 1 1 0 0

0 0 0 1 1

0

0

0 1

0

1

1

1

1 0

0 0 0 1

Add ones’ complement
to minuend

Take ones’ complement

Ones’ complement equivalent

0 0 1 1 1 0

0� 0 0 1 1 1

0

1

1

0

0 0 0 1 1 0 1 1�

Standard subtraction

1 0 1 1

End-
around-
carry

FIGURE 8.5
 Ones ’ complement
binary subtraction.

 Once again, the standard way of performing the operation would be to subtract
the subtrahend (00011110 2) from the minuend (00111001 2), which may require
the use of one or more borrow operations. To perform the equivalent operation
in ones ’ complement, each of the digits of the subtrahend is fi rst subtracted
from a 1. The resulting ones ’ complement value is added to the minuend, and
then an end-around-carry operation is performed. The advantage of the ones ’
complement technique is that it is never necessary to perform a borrow opera-
tion. In fact, it isn’t even necessary to perform a subtraction, because the ones ’
complement of a binary number can be simply generated by inverting all of its
bits; that is, by exchanging all the 0s with 1s and vice versa.

 Now consider the same binary subtraction performed using the two’s comple-
ment technique (Figure 8.6).

SECTION 1 Fundamentals92

01 0 0 0 0 0

0� 0 0 1 1

1 1 1 0 0

1

0

0

1

1

0

0

� 0

0 0 1 1 1 0

1� 1 1 0 0

0 0 0 1 1

0

0

0 1

1

1

0

1 1

0 0 0 1

Add two’s complement
to minuend

Take two’s complement

Two’s complement equivalent

0 0 1 1 1 0

0� 0 0 1 1 1

0 1

1 0
5710 � 3010 � 2710

0 0 0 1 1 0 1 1�

Standard subtraction

1 0 1 1

Drop
any
carry

FIGURE 8.6
 Two’s complement
binary subtraction.

0 0 0 1 1 1 1 0 Value to be complemented

1 1 1 0 0 0 1 0 Invert the remaining bits

1 0 Copy from the LSB up to,
 and including, the first 1

MSB LSB

FIGURE 8.7
 Shortcut for generating a two’s complement.

 As before, the advantage of the two’s complement is that it is not necessary to per-
form an end-around-carry; any carry-out resulting from the addition of the two
most signifi cant bits is simply dropped from the fi nal result. The disadvantage is
that, during the process of creating the two’s complement, it is necessary to perform
a borrow operation for every nonzero digit in the subtrahend. This problem can be
solved by fi rst taking the ones ’ complement of the subtrahend, adding one to the
result, and then performing the remaining operations as for the two’s complement.

 As fate would have it, there is a short-cut approach available to generate the
two’s complement of a binary number. Commencing with the least signifi cant
bit of the value to be complemented, each bit up to and including the fi rst 1 is
copied directly, and the remaining bits are inverted (Figure 8.7).

 Unfortunately, the binary subtraction examples presented in Figures 8.5 and
8.6 would return incorrect results if we were to swap the values of the minuend

Binary Arithmetic CHAPTER 8 93

and the subtrahend (the values on the top and the bottom, respectively). This
is because, for the purposes of these examples, we made certain that the minu-
end was larger than the subtrahend, thereby ensuring that the result would be
a positive value.

 To put this another way, in order for these techniques to work, the fi nal result
must be greater than or equal to zero. The reason is clear: subtracting a larger
value from a smaller value results in a negative value, but we’re currently using
unsigned binary numbers and—by defi nition—an unsigned binary number
can only be used to represent a positive value.

 Now, it would obviously be somewhat inconvenient if computers could only
be used to generate positive values, so we need to come up with some way to
represent both positive and negative numbers …

 SIGN-MAGNITUDE BINARY NUMBERS
 In standard decimal arithmetic, numbers are typically represented in a form
known as sign-magnitude , 3 which means prefi xing values with plus or minus
signs (by default, numbers without signs are assumed to represent positive val-
ues). For example, values of plus and minus 27 would be shown as �27 and
� 27 (or just 27 and � 27), respectively.

 If we so desired, we could use the same technique in binary; for example, we
could say that the most signifi cant bit was to be considered to be the sign bit ;
also that a 0 in this bit would indicate a positive value while a 1 would indicate
a negative value. In the case of an 8-bit value, for example, 00000001 2 would
represent �1, 00000010 2 would represent �2, 00000011 2 would represent � 3,
and so forth, while 10000001 2 would represent �1, 00000010 2 would represent
� 2, 00000011 2 would represent � 3, and so on.

 Using this binary sign-magnitude approach with an 8-bit value would allow us
to represent numbers in the range �127 to �127 (11111111 2 to 01111111 2). One
slightly awkward outcome of this scheme is that we would also end up with
both negative and positive versions of zero; that is, �0 and �0 (10000000 2
and 00000000 2). Why would this be a problem? Well, if we were comparing
two values, would �0 be considered to be larger than �0? In fact, for reasons
of effi ciency, computers rarely employ the sign-magnitude form, and instead
use the signed binary format discussed in the next topic.

 3 This is sometimes written as sign � magnitude.

SECTION 1 Fundamentals94

 SIGNED BINARY NUMBERS
 Perhaps not surprisingly, signed binary numbers have the concept of a sign, and
they can be used to represent both positive and negative values. Once again,
the most signifi cant bit is also called the sign bit, but signed binary numbers
use this bit in a rather cunning way (Figure 8.8).

MSB
(sign bit)

LSB

Negative
value

Positive
value

x x x x x x x x

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

1

0

1

0

�

�

�

010

�27 � �128’s column � bit 7
�26 � �64’s column � bit 6
�25 � �32’s column � bit 5
�24 � �16’s column � bit 4
�23 � �8’s column � bit 3
�22 � �4’s column � bit 2
�21 � �2’s column � bit 1
�20 � �1’s column � bit 0

110

210
·
·
·

0 1 1 1 1 1 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0

1

0

0

0 1

0

1

0

1

0

�

�

�

�

�

12610

12710

�12810

�12710

�12610

1 1 1 1 1 1

1 1 1 1 1 1

1

1

0

1 � �110

� �210

·
·
·

FIGURE 8.8
 Signed binary numbers.

 As we see, the least signifi cant bits continue to represent the same positive quan-
tities as for unsigned binary numbers, but the sign bit is used to represent a nega-
tive quantity. In the case of a signed 8-bit number, a 1 in the sign bit represents
�27 (that’s �128 in decimal), and the remaining bits are used to represent posi-
tive values in the range 0 10 through �127 10. Thus, when the value represented by
the sign bit is combined with the values represented by the remaining bits, an
8-bit signed binary number can be used to represent values in the range �128 10
through �127 10 (also, we only have one bit-pattern representing zero).

 Now, this can be tricky to wrap one’s brain around the fi rst time you see it.
So, to further illustrate the differences between the sign-magnitude and signed
binary formats, let’s briefl y consider a positive sign-magnitude decimal number
and its negative equivalent; for example, �27 and �27. As we see, the digits
are identical for both cases and only the sign changes. Now consider the same
values represented as signed binary numbers (Figure 8.9).

Binary Arithmetic CHAPTER 8 95

 In this case, the bit patterns of the two binary numbers are very different. This
is because the sign bit represents an actual quantity (� 128 10) rather than a sim-
ple plus or minus; thus, the signed equivalent of � 27 10 is formed by combining
� 128 10 with �101 10 .

 ADDING SIGNED BINARY NUMBERS
 At this point you’re probably muttering to yourself: “ This is insane, what kind of
raving lunatic would come up with a scheme as convoluted as this? ” Well, sit up and
pay attention, because this is the clever part: closer investigation of Figure 8.9
reveals that each bit pattern is in fact the two’s complement of the other! To
put this another way, taking the two’s complement of a positive signed binary
value returns its negative equivalent, and vice versa. And why does this make
the world a better place? Well …

 … the end result of using signed binary numbers is to greatly reduce the com-
plexity of operations within a computer. To illustrate why this is so, let’s fi rst
consider one of the simplest arithmetic operations, that of addition. Compare
the additions of positive and negative decimal values in sign-magnitude form
with their signed binary counterparts (Figure 8.10).

 Examine the standard decimal calculations on the left. The one at the top is
easy to understand because it’s a straightforward addition of two positive val-
ues. However, even though we are all extremely familiar with decimal addition,
you probably found the other three a little harder because you had to decide
exactly what to do with the negative values. By comparison, the signed binary
calculations on the right are all simple additions, regardless of whether the
individual values are positive or negative.

 This really has huge implications. If computers were forced to use a binary version
of the sign-magnitude form, they would have to perform a relatively complicated
sequence of operations in order to achieve the simplest addition (Figure 8.11).

�2710 �2710

0 0 0 1 1 0

�2710

0 12 1 1 1 0 0 1 0 12

�10110 � �2710�12810

FIGURE 8.9
 Comparison of positive and negative signed binary numbers.

SECTION 1 Fundamentals96

 As well as being time consuming, performing all these operations would require
a substantial number of logic gates. Thus, the advantages of using the signed
binary format for addition operations are apparent: signed binary numbers can
always be directly added together to provide the correct result in a single opera-
tion, regardless of whether they represent positive or negative values. That is, the
operations a � b, a � (� b), (� a) � b, and (� a) � (� b) are all performed in
exactly the same way, by simply adding the two values together. This results in
fast computers that can be constructed using a minimum number of logic gates.

 SUBTRACTING SIGNED BINARY NUMBERS
 Let’s move on to consider the case of subtraction. We all know that 10 � 3 � 7
in decimal arithmetic, and that the same result can be obtained by negating the

Decimal sign-
magnitude

Signed binary

5 7

3 0

8 7

0 0 1 1 1 0

0��

�

0 0 1 1 1

0 1 0 1 0 1

0 1

1 0

11

�

�

5 7

�3 0

2 7

0 0 1 1 1 0

1� 1 1 0 0 0

0 0 0 1 1 0

0 1

1 0

11

�

�

�5 7

3 0

�2 7

1 1 0 0 0 1

0� 0 0 1 1 1

1 1 1 0 0 1

1 1

1 0

10

�

�

�5 7

�3 0

�8 7

1 1 0 0 0 1

1� 1 1 0 0 0

1 0 1 0 1 0

1 1

1 0

10

FIGURE 8.10
 Comparison of sign-magnitude decimal versus signed binary additions.

First compare the signs of the two values.

IF THE SIGNS ARE THE SAME:

Add the values. Note that the

result will always have the same

sign as the original values.

IF THE SIGNS ARE DIFFERENT:

Subtract the smaller value from

the larger value, then attach

the correct sign to the result.

FIGURE 8.11
 Steps required for sign-magnitude additions.

Binary Arithmetic CHAPTER 8 97

0 0 1

Multiplicand

Partial
products

0 1 1 00

0 0 1 0 1 1 00

0 1 0 1 1 00 0

0 0 0 0 00 0 0

0 0 0 00 0 0 0

1 1 00 0 0 1 0

1 00 0 0 1 0 1

00 0 0 1 0 1 1

0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 � 25301000 0 0 1 0 0 1 1

0 1 1 1 0 0� 1 1 2210 � 11510

Multiplier Decimal
equivalent

FIGURE 8.12
 Binary multiplication using a shift-and-add technique.

 4 For the sake of simplicity, only the case of a � b is discussed here. However, the operations
a � b, a � (�b), (�a) � b, and (�a) � (�b) are all performed in exactly the same way, by
simply taking the two’s complement of b and adding the result to a, regardless of whether a
and/or b represent positive or negative values.

right-hand value and inverting the operation from a subtraction to an addition:
that is, 10 � (� 3) � 7.

 This technique is also true for signed binary arithmetic, although the negation
of the right hand value is performed by taking its two’s complement rather
than by changing its sign. For example, consider a generic signed binary sub-
traction represented by a � b . 4 Generating the two’s complement of b results
in � b, allowing the operation to be performed as an addition: a � (� b). This
means that computers do not require different blocks of logic to add and sub-
tract; instead, they require only an adder and a two’s complementer, where the
two’s complementer requires signifi cantly fewer logic gates than a subtractor.

 BINARY MULTIPLICATION
 One technique for performing multiplication in any number base is by means
of repeated addition; for example, in decimal, 6 � 4 � 6 � 6 � 6 � 6 � 24.
However, even though computers can perform millions of operations every
second, the repeated addition approach is time-consuming when the values to
be multiplied are large. As an alternative, binary numbers may be multiplied
together by means of a shift-and-add technique , as illustrated in Figure 8.12 .

SECTION 1 Fundamentals98

 Using this approach, a partial product is generated for every bit in the multiplier.
If the value of the multiplier bit is 0, its corresponding partial product consists
only of 0s; if the value of the bit is 1, its corresponding partial product is a
copy of the multiplicand. Additionally, each partial product is left-shifted as a
function of the multiplier bit with which it is associated; for example, the par-
tial product associated with bit 0 in the multiplier is left-shifted zero bits, the
partial product associated with bit 1 is left-shifted one bit, etc. All of the partial
products are then added together to generate the result, whose width is equal
to the sum of the widths of the two values being multiplied together.

 Unfortunately, this algorithm works only with unsigned binary values. However,
this problem can be overcome by taking the two’s complement of any negative
values before feeding them into the multiplier. If the signs of the two values are
the same, both positive or both negative, then no further action need be taken. 5
Alternatively, if the signs are different, then the result returned from the multi-
plier must be negated by transforming it into its two’s complement.

 There are several ways to construct a multiplier based on this shift-and-add
technique. In one implementation, for example, all of the partial products are
generated simultaneously and then added together. This requires a lot of logic
gates, but the resulting multiplication is extremely fast. As another option, we
can cycle round generating each of the partial products one-at-a-time and add-
ing them into an accumulated result. This cuts down on the number of logic
gates required, but it increases the time taken to achieve the fi nal result.

 BINARY DIVISION
 As you might imagine, long division is just about as much fun in binary as it is
in decimal, which is to say “ Not a lot! ” For this reason, binary division is best
left to computers because they are in no position to argue about it. 6

 5 This is because a positive multiplied by a positive and a negative multiplied by a negative
both return positive results; for example, (� 3) � (� 4) � � 12.
 6 If you are interested in learning more about this topic, may I be so bold as to recommend
another book that I coauthored with a friend, called How Computers Do Math. (That’s what
the book is called, not my friend—his name is Alvin.) This little rascal (again, the book, not
Alvin), ISBN-13: 978-0471732785, comes equipped with a CD-ROM containing a virtual
8-bit computer-calculator that runs on your PC.

99

 CABBAGES, PARROTS, AND BUCKETS OF
BURNING OIL
 One of the most signifi cant mathematical tools available to electronics
designers was actually invented for quite a different purpose. Around the
1850s, a British mathematician, George Boole (1815–1864), developed a
new form of mathematics that is now known as Boolean Algebra. Boole’s
intention was to use mathematical techniques to represent and rigorously test
logical and philosophical arguments. His work was based on the idea that a
statement is a sentence that asserts or denies an attribute about an object or
group of objects:

 CHAPTER 9 CHAPTER 9

 Boolean Algebra

 By comparison, a proposition is a statement that is either True or False with no
ambiguity:

 Statement: Your face resembles a cabbage .
 Depending on how carefully you choose your friends, they may either
agree or disagree with the sentiment expressed, but this is subjective
and this statement cannot therefore be proved to be either True or False .

 Proposition: I just tipped a bucket of burning oil into your lap .
 This proposition may be True or it may be False , but it is defi nitely
one or the other and there is no ambiguity about it.

SECTION 1 Fundamentals100

 From these humble beginnings, Boole established a new mathematical fi eld
known as symbolic logic, in which logical relationship between propositions
can be represented symbolically by such means as equations or truth tables.
Sadly, this work found little application outside the school of symbolic logic
for almost one hundred years.

 In fact, the signifi cance of Boole’s work was not fully appreciated until the late
1930s, when a graduate student at MIT, Claude Elwood Shannon (1916–2001),
submitted a master’s thesis that revolutionized electronics. In this thesis,
Shannon showed that Boolean Algebra offered an ideal technique for repre-
senting the logical operation of digital systems. Shannon had realized that the
Boolean concepts of False and True could be mapped onto the binary digits 0 and
1, and that both could be easily implemented by means of electronic circuits. 1, 2

 PRIMITIVE LOGIC FUNCTIONS
 Logical functions can be represented using graphical symbols, equations, or
truth tables, and these views can be used interchangeably (Figure 9.1).

 There are a variety of ways to represent Boolean equations. In this book, the
symbols & , |, and ^ are used to represent AND, OR, and XOR respectively; a

 1 In addition to recognizing the application of Boolean Algebra to electronic design, Shannon is
also credited with the invention of the rocket-powered Frisbee, and is famous for riding down
the corridors at Bell Laboratories on a unicycle while simultaneously juggling four balls.
 2 The author can juggle with fi ve china plates … but only for a very short time indeed!

 A proposition combined with an OR operator is known as a disjunction :

 Propositions can be combined together in several ways; a proposition com-
bined with an AND operator is known as a conjunction :

 Conjunction: You have a parrot on your head AND you have a fi sh in your ear .
 The result of a conjunction is True if all of the propositions
comprising that conjunction are True .

 Disjunction: You have a parrot on your head OR you have a fi sh in your ear .
 The result of a disjunction is True if at least one of the propositions
comprising that disjunction is True .

Boolean Algebra CHAPTER 9 101

y � a | by � a y � a & b y � a ^ b

0 0

1 1

a y

BUF

a y
a

b
y

AND

0 0

0 1

1 01 0

1 1

a b

0

0

0

1

y

0 0

0 1

1 01 0

1 1

a b

0

1

1

1

y

0 0

0 1

1 01 0

1 1

a b

0

1

1

0

y

a

b
y

I

OR

a

b
y

I

XOR

y � a | by � a y � a & b y � a ^ b

0 1

1 0

a y

NOT

a y
a

b
y

NAND

0 0

0 1

1 01 0

1 1

a b

1

1

1

0

y

0 0

0 1

1 01 0

1 1

a b

1

0

0

0

y

0 0

0 1

1 01 0

1 1

a b

1

0

0

1

y

a

b
y

I

NOR

a

b
y

I

XNOR

FIGURE 9.1
 Summary of primitive logic functions.

negation, or NOT, is represented by a horizontal line, or bar, over the portion
of the equation to be negated.

 For the remainder of this chapter, we will typically use AND and OR functions
in our examples. As we know from Chapter 5: Primitive Logic Functions, and
6: Using Transistors to Build Logic Gates, the results from NAND and NOR functions
would be the logical inverse of those from AND and OR functions, respectively.

SECTION 1 Fundamentals102

 COMBINING A SINGLE VARIABLE WITH
LOGIC 0 OR LOGIC 1
 A set of simple but highly useful rules can be derived from the combination of
a single variable with a logic 0 or logic 1 (Figure 9.2). 3

 THE IDEMPOTENT RULES
 The rules derived from the combination of a single variable with itself are
known as the idempotent rules (Figure 9.3).

 THE COMPLEMENTARY RULES
 The rules derived from the combination of a single variable with the inverse of
itself are known as the complementary rules (Figure 9.4).

y � 0

y � a & 0

a
b�0

y

AND

y � a | 0

y � a

a
b�0

y
I

OR

0 0

0 1

1 01

1 1

a b

0

0

0

1

y

0 0

0 1

1 01

1 1

a b

0

1

1

1

y

y � a

y � a & 1

a
b�1

y

AND

y � a | 1

y � 1

a
b�1

y
I

OR

0 0

0 1

1 01

1 1

a b

0

0

0

1

y

0 0

0 1

1 01

1 1

a b

0

1

1

1

y

FIGURE 9.2
 Combining a single variable with a logic 0 or a logic 1.

 3 The symbol � shown in the equations in Figures 9.2, 9.3, and 9.4 means “ therefore. ”

Boolean Algebra CHAPTER 9 103

 THE INVOLUTION RULE
 The involution rule states that an even number of inversions cancel each other
out; for example, two NOT functions connected in series generate an identical
result to that of a BUF function (Figure 9.5).

y � a

y � a & a

a
b�a

y
&

AND

y � a | a

y � a

y
I

OR

0 0

0 1

1 01

1 1

a b

0

0

0

1

y

0 0

0 1

1 01

1 1

a b

0

1

1

1

y

a
b�a

FIGURE 9.3
 The idempotent rules.

a
b�a

NOT

y � 0

y � a & a

a
b�a

y
&

AND

y � a | a

y � 1

y
I

OR

0 0

0 1

1 01

1 1

a b

0

0

0

1

y

0 0

0 1

1 01

1 1

a b

0

1

1

1

y

NOT

FIGURE 9.4
 The complementary rules.

w � a y � w y � a y � a

0 1

1 0

a w

1 0

0 1

w y

0 0

1 1

a y

a w y a

BUF

y

NOT NOT

FIGURE 9.5
 The involution rule.

SECTION 1 Fundamentals104

 THE COMMUTATIVE RULES
 The commutative rules state that the order in which variables are specifi ed will
not affect the result of an AND or OR operation (Figure 9.6).

 THE ASSOCIATIVE RULES
 The associative rules state that the order in which pairs of variables are associated
together will not affect the result of multiple AND or OR operations (Figure 9.7).

y � a & b y � b & a y � a | b y � b | a

I

OR

y
b

aI

OR

y
a

b
y

a

b &

AND

y
b

a &

AND

FIGURE 9.6
 The commutative rules.

y � a & (b & c)y � (a & b) & cy � a & b & c

a
b
c

y

y

y
&

AND

a
b &

AND &

AND

a
&

AND
b
cc &

AND

y � a | (b | c)y � (a | b) | cy � a | b | c

a
b
c

y

y

y

ya
b

a

b
cc

I

OR I

OR

I

OR

I

OR

I

OR

FIGURE 9.7
 The associative rules.

Boolean Algebra CHAPTER 9 105

 PRECEDENCE OF OPERATORS
 In standard arithmetic, the multiplication operator is said to have a higher pre-
cedence than the addition operator. This means that, if an equation contains
both multiplication and addition operators without parenthesis, then the mul-
tiplication is performed before the addition. 4 For example:

 6 � 2 � 4 ˜ 6 � (2 � 4)

 Similarly, in Boolean Algebra, the & (AND) operator has a higher precedence
than the | (OR) operator:

 a | b & c ˜ a | (b & c)

 Due to the similarities between these arithmetic and logical operators, the &
(AND) operator is known as a logical multiplication or product, while the | (OR)
operator is known as a logical addition or sum. To avoid any confusion as to
the order in which logical operations will be performed, this book will always
make use of parentheses.

 THE FIRST DISTRIBUTIVE RULE
 In standard arithmetic, the multiplication operator will distribute over the addi-
tion operator because it has a higher precedence. For example:

 6 � (5 � 2) ˜ (6 � 5) � (6 � 2)

 Similarly, in Boolean Algebra, the & (AND) operator will distribute over an |

(OR) operator because it has a higher precedence; this is known as the fi rst dis-
tributive rule (Figure 9.8).

 THE SECOND DISTRIBUTIVE RULE
 In standard arithmetic, the addition operator will not distribute over the multi-
plication operator because it has a lower precedence. 5 For example:

 6 � (5 � 2) � (6 � 5) � (6 � 2)

 5 Note that the symbol � shown in the equation indicates “ is not equal to . ”

 4 Note that the symbol ̃ shown in these equations indicates “is equivalent to ” or “is the
same as . ”

SECTION 1 Fundamentals106

 However, Boolean Algebra is special in this case. Even though the | (OR) opera-
tor has lower precedence than the & (AND) operator, it will still distribute over
the & operator; this is known as the second distributive rule (Figure 9.9).

 THE SIMPLIFICATION RULES
 There are a number of simplifi cation rules that can be used to reduce the com-
plexity of Boolean expressions. As the end result is to reduce the number of
logic gates required to implement the expression, the process of simplifi cation
is also known as minimization (Figure 9.10).

 DEMORGAN TRANSFORMATIONS
 A contemporary of Boole’s, another British mathematician, Augustus
DeMorgan (1806–1871), also made signifi cant contributions to the fi eld of

Output columns are identical

y � a & (b | c) y � (a & b) | (a & c)

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

c

y
&

AND

a

b
c I

OR

y

c &

AND

a
b &

AND
I

OR

0

1

1

1

(b | c)

0

1

1

1

0

0

0

0

y

0

1

1

1

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

c

0

0

0

0

(a & b)

0

0

1

1

0

0

0

0

(a & c)

0

1

0

1

0

0

0

0

y

0

1

1

1
FIGURE 9.8
 The fi rst distributive
rule.

Boolean Algebra CHAPTER 9 107

symbolic logic; most notably, a set of rules called DeMorgan Transformations ,
which facilitate the conversion of Boolean expressions into alternate and often
more convenient forms. As the Encyclopedia Britannica says: “A renascence of logi-
cal studies came about almost entirely because of Boole and DeMorgan. ” 6

 A DeMorgan Transformation comprises four steps:

 1. Exchange all of the & (AND) operators for | (OR) operators and vice versa.
 2. Invert all the variables; also exchange 0 s for 1 s and vice versa.
 3. Invert the entire function.
 4. Reduce any multiple inversions.

Output columns are identical

y � a | (b & c) y � (a | b) & (a | c)

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

c

y

&

AND

a

b
c

I

OR

y

c

&

AND

a
b

I

OR

I

OR

0

0

0

1

(b & c)

0

0

0

1

0

0

0

1

y

1

1

1

1

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

c

0

0

1

1

(a | b)

1

1

1

1

0

1

0

1

(a | c)

1

1

1

1

0

0

0

1

y

1

1

1

1
FIGURE 9.9
 The second distributive
rule.

 6 In fact, the rules we now attribute to DeMorgan were known in a more primitive form by
William of Ockham (1280–1349) in the 14th century. To celebrate Ockham’s position in
history, the OCCAM computer programming language was named in his honor. (OCCAM
was the native programming language for the British-developed INMOS transputer.)

SECTION 1 Fundamentals108

y

&

AND

a

b

I

OR

ya

b

y

b

&

AND

&

AND

a

b

I

OR

I

OR

I

OR

y

b &

AND

&

AND

a

b

I

OR

BUF

a y

y � a | (a & b)

y � a

y � a & (a | b)

y � (a & b) | (a & b) y � (a | b) & (a | b)

y � a | (a & b) y � a & (a | b)

y

b

&

ANDI

OR

y

b &

AND

a

a aI

OR

a

b
y

a
I

OR

&

AND

b
y

a

FIGURE 9.10
 The simplifi cation rules.

Boolean Algebra CHAPTER 9 109

 Consider the DeMorgan Transformation of a 2-input AND function (Figure
9.11). Note that the NOT gate on the output of the new function can be com-
bined with the OR to form a NOR.

 Similar transformations can be performed on all of the primitive functions, as
illustrated in Figure 9.12 .

 This is another one of those times when, at a fi rst glance, the output result
appears to be more complex than what we started with. On this basis, it’s legit-
imate to say: “ Why would anyone bother to perform this rigmarole? ” Well, consider
a simple circuit that implements the function y � (a & b)|(c & d), as illustrated
in Figure 9.13 .

 As we know from our discussions in Chapter 6: Using Transistors to Build Logic
Gates, each AND and OR gate will require 6 transistors (assuming CMOS
implementations), so this circuit will consume 3 � 6 � 18 transistors. Now,
suppose that we perform a DeMorgan Transformation on the OR gate; this will
result in the circuit shown in Figure 9.14 .

a

b &

AND

y

y � a | b

Step #1 a | b

a | bStep #2

Step #3 a | b

a | b

Start a & b

Step #4 N/A

Start

a & bStep #2

Step #3 a & b

a | b

0

1

0

b

0

0

1

a

0

0

0

11 1

y (a | b)

0

1

0

b

0

0

1

a ba

11

0

0

0

y

1

1

0

1

1

1

0

0

1

1

1

00

DeMorgan Transformation

Reverse Transformation

y � a & b

Step #4 a & b

a & bStep #1

a

y

b

a

b OR

I

NOT

NOT

NOT

FIGURE 9.11
 DeMorgan Transformation of an AND function.

SECTION 1 Fundamentals110

DeMorgan

DeMorgan

DeMorgan

DeMorgan

a

b

y � a | b

NOR

NOT

NOT

a

b

y � a | b

OR

NOT

NOT

a

b

&

NAND

y � a & bNOT

NOT

a

b

&

AND

y � a & bNOT

NOT

I

I

a

b &

AND

y � a & b

a

b &

NAND

y � a & b

OR

a

b
y � a | b

NOR

a

b
y � a | b

I

I

FIGURE 9.12
 DeMorgan
Transformations of
AND, OR, NAND, and
NOR functions.

c

d &

a

b &

AND

AND

OR

y
I

FIGURE 9.13
 A simple function.

Now, at fi rst glance, this may not
seem to be too much of an advan-
tage. On the one hand our new
NAND gate has only 4 transistors
(as compared to the 6 transistors
required by the OR); but we’ve also
added two NOT gates, each of which
comprises 2 transistors, so our new
implementation now consumes (2 �

6) � (2 � 2) � 4 � 20 transistors. Eeeek! But wait a moment, remembering
that we’re talking about CMOS implementations of our logic gates, we know
that an AND gate (with 6 transistors) is actually formed from a NAND gate
(with 4 transistors) whose output is inverted by a NOT gate (with 2 transistors).

Boolean Algebra CHAPTER 9 111

If we were to draw this out, the result
would be as illustrated in Figure 9.15 .

 Now, as we know from the involution
rule we introduced earlier in this chap-
ter, an even number of inversions cancel
each other out; for example, two NOT
functions connected in series generate
an identical result to that of a BUF func-
tion, which is (logically) the same as
not having anything there at all. Thus, by cancelling out the pairs of NOT gates,
we end up with a circuit comprising only three NAND gates (each containing 4
transistors) shown in Figure 9.16 .

c

d &

a

b &

AND

AND

NOT

NOT

NAND

y
&

This used to be the OR

FIGURE 9.14
 The same function following a DeMorgan Transformation on the OR.

c

d

a

b

NAND

Inside an AND

NAND

NOT

NOT

NOT

NOT

NAND

y
&

This used to be the OR

&

&

FIGURE 9.15
 Our AND gates are actually formed from NAND and NOT gates.

&

a

b

NAND

c

d

NAND

NAND

y
&

&

FIGURE 9.16
 The fi nal circuit.

SECTION 1 Fundamentals112

 Thus, by means of a DeMorgan Transformation, we’ve taken our original cir-
cuit comprising two ANDs and an OR (with 18 transistors) and transformed it
into a new version comprising three NANDs (with 14 transistors). This equates
to around a 20% reduction in transistors. This may not seem a lot in this case,
but it becomes extremely signifi cant when you’re talking about a silicon chip
containing hundreds of millions of transistors.

 Of course, it can be a pain doing this sort of thing by hand (although this is
the way we all used to do things when I was a bright-eyed, bushy-tailed young
engineer). Fortunately, electronics designers now have computer-aided tools—
such as Logic Synthesis —that do this sort of thing for us.

 MINTERMS AND MAXTERMS
 For each combination of inputs to a logical function,
there is an associated minterm and an associated maxterm .
Consider a truth table with three inputs: a, b, and c (Figure
9.17).

 The minterm associated with each input combination is the &
(AND), or product, of the input variables, while the maxterm is
the | (OR), or sum, of the inverted input variables. Minterms
and maxterms are useful for deriving Boolean equations
from truth tables, as discussed in the following topic.

 SUM-OF-PRODUCTS AND PRODUCT-OF-SUMS
 A designer will often specify portions of a design using truth tables, and deter-
mine how to implement these functions as logic gates later. The designer may
start by representing a function as a black box 7 with an associated truth table
(Figure 9.18). Note that the values assigned to the output y in the truth table
shown in Figure 9.18 were selected randomly, and have no signifi cance beyond
the purposes of this example.

 There are two commonly used techniques for deriving Boolean equations
from a truth table. In the fi rst technique, the minterms corresponding to each
line in the truth table for which the output is a logic 1 are extracted and com-
bined using | (OR) operators; this method results in an equation said to be
in sum-of-products form [Figure 9.19(a)]. In the second technique, the maxterms

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

c Minterms

(a & b & c)

(a & b & c)

(a & b & c)

(a & b & c)

(a & b & c)

(a & b & c)

(a & b & c)

(a & b & c)

Maxterms

(a | b | c)

(a | b | c)

(a | b | c)

(a | b | c)

(a | b | c)

(a | b | c)

(a | b | c)

(a | b | c)

FIGURE 9.17
 Minterms and
maxterms.

 7 A black box is so-called because, initially, we don’t know exactly what’s going to be in it.

Boolean Algebra CHAPTER 9 113

corresponding to each line in the truth table for which the output is a logic
0 are combined using & (AND) operators; this method results in an equation
said to be in product-of-sums form [Figure 9.19(b)].

 For a function whose output is logic 1 fewer times than it is logic 0, it is gener-
ally easier to extract a sum-of-products equation. By comparison, if the out-
put is logic 0 fewer times than it is logic 1, it is generally easier to extract a
product-of-sums equation. The sum-of-products and product-of-sums forms
complement each other and return identical results. Furthermore, an equation
in either form can be transformed into its alternative form by means of the
appropriate DeMorgan Transformation.

 Once an equation has been obtained in the required form, the designer would
typically make use of the appropriate simplifi cation rules to minimize the
number of logic gates required to implement the function. However, neglecting
any potential minimization, the equations above could be translated directly
into their logic gate equivalents (Figure 9.20).

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

0

0

c y

Black
box

a

b y

c

FIGURE 9.18
 A black box with associated truth table.

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

Line #1

Line #2

Line #3

Line #4

Line #5

Line #6

Line #7

Line #8

0

1

0

1

1

1

0

0

(a) Product-of-Sums

(b) Sum-of-Products

c y

y � (a | b | c) (a | b | c) (a | b | c) (a | b | c)

Line #1 Line #3 Line #7 Line #8

Line #2 Line #4 Line #5 Line #6

& & &

y � (a & b & c) (a & b & c) (a & b & c) (a & b & c)| | |

FIGURE 9.19
 Sum-of-products versus products-of-sums (equations).

SECTION 1 Fundamentals114

 CANONICAL FORMS
 In a mathematical context, the term canonical form is taken to mean a generic
or basic representation. Canonical forms provide the means to compare two
expressions without falling into the trap of trying to compare “apples” with
“oranges. ” The sum-of-products and product-of-sums representations are dif-
ferent canonical forms. Thus, in order to compare two Boolean equations, both
must fi rst be coerced into the same canonical form; either sum-of-products or
product-of-sums.

 AN INTERESTING CONUNDRUM
 If you are new to Boolean Algebra, you may well feel
that it’s horribly complicated. In this case, you may be
surprised to hear that engineers actually enjoy posing
(and solving) logical problems. For example, here’s an
interesting conundrum that should get the old brain
cells “ fi ring on all six cylinders. ” Consider a black box with
three inputs (A, B, C) and three outputs (notA, notB ,
notC) as illustrated in Figure 9.21 .

 The notA output is the logical negation of the A input (if A
is 0, then notA will be 1; if A is 1, then notA will be 0). Similarly, the notB and notC
outputs are the logical negations of the B and C inputs, respectively.

? notB

notC

notA

“Black Box”

B

C

A

FIGURE 9.21
 A black box with
three inputs and three
outputs.

Product-of-Sums

&

I

I

y

a b c

I

I

I

ba c

Sum-of-Products

y

a b c

ba c

&

&

&

&

FIGURE 9.20
 Sum-of-products versus products-of-sums (implementations).

Boolean Algebra CHAPTER 9 115

 Now, here’s the clever part … you have to decide how to implement the con-
tents of the black box. You can use as many AND and OR gates as you wish,
but you can use only two NOT gates, and you can’t use any NAND, NOR, XOR,
or XNOR gates (when you’ve had all the fun you can stand, visit Appendix I: An
Interesting Conundrum to discover a solution).

This page intentionally left blank

117

 THE TREE OF PORPHYRY
 Diagrams used to represent logical concepts have been around in one form or
another for a very long time. For example, Aristotle (384–322 BC) was certainly
familiar with the idea of using a stylized tree fi gure to represent the relation-
ships between (and successive subdivisions of) such things as different species.
Diagrams of this type, which are known as the Tree of Porphyry, are often to be
found in medieval pictures.

 JOHN VENN AND HIS VENN DIAGRAMS
 Following the Tree of Porphyry, there seems to have been a dearth of activity on the
logic diagram front until 1761, when the brilliant Swiss mathematician Leonhard
Euler (whom we fi rst met in Chapter 7: Alternative Numbering Systems) introduced a
geometric system that could generate solutions for problems in class logic.

 Unfortunately, Euler’s work in this area didn’t really catch on because it was
somewhat awkward to use, and it was eventually supplanted in the 1890s by
a more polished scheme proposed by the English logician John Venn (1834–
1923). Venn was heavily infl uenced by the work of the English mathematician
George Boole (whom we introduced in Chapter 9: Boolean Algebra), and his
Venn diagrams very much complemented Boolean Algebra.

 ALLAN MARQUAND AND LEWIS CARROLL
 Venn diagrams were strongly based on the interrelationships between overlap-
ping circles or ellipses. The fi rst logic diagrams based on squares or rectangles
were introduced in 1881 by Allan Marquand (1853–1924). A lecturer in logic
and ethics at John Hopkins University, Marquand’s diagrams spurred interest
by a number of other contenders, including one offering by an English logician
and author, the Reverend Charles Lutwidge Dodgson (1832–1898).

 CHAPTER 10 CHAPTER 10

 Karnaugh Maps

SECTION 1 Fundamentals118

 Dodgson’s diagrammatic technique fi rst appeared in his book The Game of Logic ,
which was published in 1886, but he is better known to us by his pen name,
Lewis Carroll, and as being the author of Alice’s Adventures in Wonderland. Apart
from anything else, these rectangular diagrams are of interest to us because they
were the forerunners of a more modern form known as Karnaugh maps …

 MAURICE KARNAUGH AND KARNAUGH MAPS
 In 1953, the American physicist Maurice Karnaugh (pronounced “car-no,”
1924–) invented a form of logic diagram called a Karnaugh map, which pro-
vides an alternative technique for representing Boolean functions; for example,
consider the Karnaugh map for a 2-input AND function (Figure 10.1).

0

0

1

1

y
a

b &

AND

a

0

1

0

1

0

00
ab

0

0

1

b

Truth table

y
01

Karnaugh map

11

1

10

FIGURE 10.1
Karnaugh map for a 2-input AND function.

 1 Gray codes are introduced in more detail in Appendix D: Gray Codes.

 The Karnaugh map comprises a box for every line in the truth table. The binary val-
ues above the boxes are those associated with the a and b inputs. Unlike a truth table,
in which the input values typically follow a binary sequence, the Karnaugh map’s
input values must be ordered such that the values for adjacent columns vary by only
a single bit: for example, 00 2, 01 2, 11 2, and 10 2. This ordering is known as a Gray
code, 1 and it is a key factor with regard to the way in which Karnaugh maps work.

 The y column in the truth table shows all the 0 and 1 values associated with
the gate’s output. Similarly, all of the output values could be entered into the
Karnaugh map’s boxes. For clarity, however, it is common for only a single set
of values to be used (typically the 1s).

 Similar maps can be constructed for 3-input and 4-input functions. In the case
of a 4-input map, the values associated with the c and d inputs must also be
ordered as a Gray code: that is, they must be ordered in such a way that the val-
ues for adjacent rows vary by only a single bit (Figure 10.2).

Karnaugh Maps CHAPTER 10 119

 MINIMIZATION USING KARNAUGH MAPS
 Karnaugh maps often prove useful in the simplifi cation and minimization of
Boolean functions. Consider an example 3-input function represented as a
black box with an associated truth table (Figure 10.3). 2

 The equation extracted from the truth table in sum-of-products form contains
four minterms, 3 one for each of the 1s assigned to the output. Algebraic sim-
plifi cation techniques could be employed to minimize this equation, but this

00
ab

c 01 11 10

0

1

3-input
function

a

b y

c

00
ab

cd 01

4-input
function

11 10

00

01

11

10

a

b
y

c

d

FIGURE 10.2
 Generic Karnaugh maps for 3- and 4-input functions.

 2 The values assigned to output y in the truth table were selected randomly and have no sig-
nifi cance beyond the purposes of this example.
 3 The concepts of minterms and maxterms were introduced in Chapter 9: Boolean Algebra .

3-input
function

a

b y

c

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

0

0

Sum-of-products expression

c y

y � (a & b & c) (a & b & c) (a & b & c) (a & b & c)

FIGURE 10.3
 Example 3-input function.

SECTION 1 Fundamentals120

would necessitate every minterm being compared to each of the others, which
can be somewhat time-consuming.

 This is where Karnaugh maps leap onto the stage with a fanfare of trumpets.
The 1s assigned to the Karnaugh map’s boxes represent the same minterms as the
1s in the truth table’s output column; however, as the input values associated with
each row and column in the map differ by only one bit, any pair of horizontally
or vertically adjacent boxes corresponds to minterms that differ by only a single
variable. Such pairs of minterms can be grouped together and the variable that
differs can be discarded, leaving a much-simplifi ed equation (Figure 10.4).

 In the case of the horizontal group, input a is 0 for both boxes, input c is 1
for both boxes, and input b is 0 for one box and 1 for the other. Thus, for this
group, changing the value on b does not affect the value of the output. This
means that b is redundant and can be discarded from this group. Similarly, in
the case of the vertical group, input a is 1 for both boxes, input b is 0 for both
boxes, and input c is 0 for one box and 1 for the other. Thus, input c is redun-
dant for this group and can be discarded.

 GROUPING MINTERMS
 In the case of a 3-input Karnaugh map, any two horizontally or vertically adja-
cent minterms, each composed of three variables, can be combined to form a new
product term composed of only two variables. Similarly, in the case of a 4-input
map, any two adjacent minterms, each composed of four variables, can be com-
bined to form a new product term composed of only three variables. Additionally,
the 1s associated with the minterms can be used to form multiple groups. For
example, consider the 3-input function shown in Figure 10.5 , in which the min-
term corresponding to a � 1, b � 1, and c � 0 is common to three groups.

y � (a & c) (a & b)

0

0

1

1

b

Truth table

0

0

0

0

a

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

0

0

c y 00
ab

c 01 11 10

1

111

0

1

00
ab

c 01 11 10

1

111

0

1

FIGURE 10.4
 Karnaugh map minimization of example 3-input function.

Karnaugh Maps CHAPTER 10 121

 Groupings can also be formed from four adjacent minterms, in which case two
redundant variables can be discarded. Consider some 4-input Karnaugh Map
examples (Figure 10.6).

 In fact, any group of 2 n adjacent minterms can be gathered together (where n is
a positive integer). For example, 2 1 � two minterms, 2 2 � 2 � 2 � four min-
terms, 2 3 � 2 � 2 � 2 � eight minterms, and so forth.

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

0

1

0

0

0

1

1

1

1

1

1

0

1

0

1

1

0

1

1

c y

y � (b & c) (a & c) (a & b)

a

b

c

00
ab

c 01 11 10

11

1

110

13-input
function

y

FIGURE 10.5
 Using the same minterm to form multiple Karnaugh map groups.

y � (a & b) y � (c & d) y � (a & b) (c & d)

y � (a & d) y � (b & d) (a & c)y � (a & b) (b & c)

00
ab

cd 01

1

1

1

1

11 10

00

01

11

10

00
ab

cd 01

1 1 1 1

11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01

1

1 1

1

11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

1

1 1

1

1

1

1 1

1

1

1 1

1

11 1 1

1

1

1

FIGURE 10.6
 Karnaugh map groupings of four adjacent minterms.

SECTION 1 Fundamentals122

 As was noted earlier, Karnaugh map input values are ordered so that the values
associated with adjacent rows and columns differ by only a single bit. One result
of this ordering is that the top and bottom rows are also separated by only a sin-
gle bit (it may help to visualize the map rolled into a horizontal cylinder such that
the top and bottom edges are touching). Similarly, the left and right columns are
separated by only a single bit (in this case it may help to visualize the map rolled
into a vertical cylinder such that the left and right edges are touching). This leads to
some additional groupings, a few of which are shown in Figure 10.7 .

 Note especially the last example. Diagonally adjacent minterms generally
cannot be used to form a group; however, remembering that the left-right
columns and the top-bottom rows are logically adjacent, this means that the
four corner minterms are also logically adjacent, which in turn means that they
can be used to form a single group.

 INCOMPLETELY SPECIFIED FUNCTIONS
 In certain cases a function may be incompletely specifi ed: that is, the out-
put may be undefi ned for some of the input combinations. If, for example,

y � (a & d) (b & c) y � (b & d)

00
ab

cd 01

1

1

1

1

1

1 1 1 1

1 1

1 1

11

1 11

1

11 10

00

01

11

10

00

1 1

ab
cd 01 11 10

00

01

11

10

00
ab

cd 01 11

1 1

1 1

10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

y � (a & b & d)

y � (b & c) (a & b & d)

y � (b & c & d) y � (b & d)

FIGURE 10.7
 Some additional Karnaugh map grouping possibilities.

Karnaugh Maps CHAPTER 10 123

the designer knows that certain input combinations
will never occur, then the value assigned to the output
for these combinations is irrelevant. Alternatively, for
some input combinations, the designer may simply not
care about the value on the output. In both cases, the
designer can represent the output values associated with
the relevant input combinations as question marks in the
Karnaugh map (Figure 10.8).

 The ? characters indicate don’t care states, which can be con-
sidered to represent either 0 or 1 values at the designer’s
discretion. In the example shown in Figure 10.8 , we have no interest in the ? char-
acter in the box referenced by a � 0, b � 0, c � 1, d � 0 or the ? character in the
box at a � 0, b � 1, c � 1, d � 1, because neither of these can be used to form a
larger group. However, if we decide that the other three ? characters are going to
represent 1 values, then they can be used to form larger groups, which allows us
to minimize the function to a greater degree than would otherwise be possible.

 It should be noted that many electronics references use X characters to represent
don’t care states. Unfortunately, this may lead to confusion, as some computer-
aided design tools (such as logic simulators) use X characters to represent don’t
know states . Unless otherwise indicated, this book will use ? and X to represent
don’t care and don’t know states, respectively.

 POPULATING MAPS USING 0s VERSUS 1 s
 When we were extracting Boolean equations from truth tables in the previous
chapter, we noted that in the case of a function whose output is logic 1 fewer
times than it is logic 0, it is generally easier to extract an equation in the sum-of-
products form. By comparison, if the output is logic 0 fewer times than it is logic
1, it is generally easier to extract an equation in the product-of-sums form.

 The same thing applies to a Karnaugh map. If the output is logic 1 fewer times
than it is logic 0, then it’s probably going to be a lot easier to populate the map
using logic 1s. Alternatively, if the output is logic 0 fewer times than it is logic 1,
then populating the map using logic 0s may be a better idea.

 When a Karnaugh Map is populated using the 1s assigned to the truth table’s
output, the resulting Boolean expression is extracted from the map in sum-of-
products form. By comparison, if the Karnaugh Map is populated using the 0s
assigned to the truth table’s output, then the groupings of 0s are used to gener-
ate expressions in product-of-sums form (Figure 10.9).

y � (c & d) (a & c)

00
ab

cd 01 11 10

00

01

11

10 1

?

1

?

11

?

?

?

1

FIGURE 10.8
 Karnaugh map for an
incompletely specifi ed
function.

SECTION 1 Fundamentals124

 Although the sum-of-products and product-of-sums expressions appear to be
somewhat different, they do produce identical results. The expressions can be
shown to be equivalent using algebraic means, or by constructing truth tables
for each expression and comparing the outputs.

 Karnaugh maps are most often used to represent 3-input and 4-input func-
tions. It is possible to create similar maps for 5-input and 6-input functions,
but these maps can quickly become unwieldy and diffi cult to use. Thus, the
Karnaugh technique is generally not considered to have any application for
functions with more than six inputs.

0

0

1

1

b

0

0

0

0

a

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

0

0

c y 00
ab

c 01 11 10

1

111

0

1

00
ab

c 01 11 10

0

0

000

1

Sum-of-products

Product-of-sums

Equivalent

y � (a & c) (a & b)

y � (a | c) (a b)&

FIGURE 10.9
 Populating Karnaugh maps with 0s versus 1s .

125

 FIRST GATHER A BUCKET OF LOGIC GATES
 The primitive logic functions NOT, AND, OR, NAND, NOR, XOR, and XNOR
can be connected together to build slightly more complex functions; in turn,
these may be used as building blocks in yet more sophisticated systems. The
examples introduced in this chapter were selected because they occur com-
monly in designs, are relatively simple to understand, and will prove useful in
later discussions.

 SCALAR VERSUS VECTOR NOTATION
 A single signal carrying one bit of binary data is known as a scalar entity. A set
of signals carrying similar data can be gathered together into a group known as
a vector (see also the glossary defi nition of vector).

 Consider the circuit fragments shown in Figure 11.1 . Each of these fragments
represents four 2-input AND gates. In the case of the scalar notation, each sig-
nal is assigned a unique name: for example, a3, a2, a1, and a0. By comparison,
when using vector notation, a single name is applied to a group of signals, and
individual signals within the group are referenced by means of an index: for
example, a[3], a[2], a[1], and a[0]. This means that if we were to see a schematic
(circuit) diagram containing two signals called a3 and a[3], we would under-
stand this to represent two completely different signals (the former being a sca-
lar named “ a3 ” and the latter being an element of a vector named “ a ”).

 A key advantage of vector notation is that it allows all of the signals compris-
ing the vector to be easily referenced in a single statement: for example, a[3:0].
Thus, vector notation can be used to reduce the size and complexity of a circuit
diagram while at the same time increasing its clarity.

 CHAPTER 11 CHAPTER 11

 Slightly More Complex
Functions

SECTION 1 Fundamentals126

Scalar notation

y3
a3

b3 &

Gate 3

y2
a2

b2 &

Gate 2

y1
a1

b1 &

Gate 1

y0
a0

b0 &

Gate 0

Vector notation
(expanded)

y[3]
a[3]

b[3] &

Gate [3]

y[2]
a[2]

b[2] &

Gate [2]

y[1]
a[1]

b[1] &

Gate [1]

y[0]
a[0]

b[0] &

Gate [0]

Vector notation
(compressed)

y[3:0]
a[3:0]

b[3:0] &

Gate [3:0]

FIGURE 11.1
 Scalar versus vector notations.

 EQUALITY COMPARATORS
 In some designs it may be necessary to compare two sets of binary values to
see if they contain the same data. Consider a function used to compare two
4-bit vectors: a[3:0] and b[3:0]. A scalar output called equal is to be set to
logic 1 if each bit in a[3:0] is equal to its corresponding bit in b[3:0]. That is,
the vectors are equal if a[3] � b[3], a[2] � b[2], a[1] � b[1], and a[0] � b[0]

(Figure 11.2).

 The values on a[3] and b[3] are compared using a 2-input XNOR gate. As we
know from Chapter 5: Primitive Logic Functions, and Chapter 6: Using Transistors
to Build Logic Gates, if the values on the inputs to an XNOR are the same (both
0s or both 1s), then its output will be 1; but if the values on its inputs are dif-
ferent, the output will be 0. Similar comparisons are performed between the
other inputs: a[2] with b[2], a[1] with b[1], and a[0] with b[0]. The fi nal AND gate
is used to gather the results of the individual comparisons. If all the inputs to
the AND gate are 1, the two vectors are the same and the output of the AND
gate will be 1. Correspondingly, if any of the inputs to the AND gate are 0, the
two vectors are different and the output of the AND gate will be 0.

Slightly More Complex Functions CHAPTER 11 127

equal

equal � (a[3] ^ b[3]) & (a[2] ^ b[2]) & (a[1] ^ b[1]) & (a[0] ^ b[0])0

1

inputs

a[3:0] � b[3:0]

a[3:0] � b[3:0]

equal

Comparator

equal

b[3:0]

a[3:0]

a[3]

b[3]

XNOR

|

a[2]

b[2]

XNOR

|

a[1]

b[1]

XNOR

AND|

a[0]

b[0]

XNOR

|

&

FIGURE 11.2
 4-bit equality comparator.

 Of course, a similar result could have been obtained by replacing the XNORs
with XORs and the AND with a NOR, and either of these implementations
could be easily extended to accommodate input vectors of greater width.

 MULTIPLEXERS
 A multiplexer uses a binary value, or address, to select between a number of
inputs and to convey the data from the selected input to the output. For exam-
ple, consider a 2:1 (“ two-to-one ”) multiplexer as illustrated in Figure 11.3 .

 The 0 and 1 annotations on the multiplexer symbol represent the possible values
of the select input and are used to indicate which data input will be selected.

 The ? characters in the truth table indicate don’t care states. When the select
input is presented with a logic 0, the output from the function depends only
on the value of the d0 data input, and we don’t care about the value on the d1

input. Similarly, when select is presented with a logic 1, the output from the
function depends only on the value of the d1 data input, and we don’t care

SECTION 1 Fundamentals128

about the value on the d0 input. The use of don’t care states reduces the size of
the truth table, better represents the operation of this particular function, and
simplifi es the extraction of the sum-of-products expression describing this func-
tion because the don’t cares can be ignored.

 Of course, an identical result could have been achieved using a full truth table
combined with a Karnaugh map minimization (Figure 11.4). 1

2:1 MUX

y

d1

Select

d0
0

1

d1

d0

Select

&

I
y

AND

AND

y � (select & d0) | (select & d1)

OR

&

Select

0 ?
1 ?
? 0
? 1

d0 d1

0
1
0
1

0
0
1
1

y

FIGURE 11.3
 2:1 multiplexer.

00
d0, d1

Select 01 11 10

11

1 1

0

1

Select

0 0
0 1
1 0
1 1

d0 d1

0
0
1
1

0
0
0
0

0 0
0 1
1 0
1 1

0
1
0
1

1
1
1
1

y

y � (select & d0) | (select & d1)

FIGURE 11.4
 Using a Karnaugh map to derive the 2:1 multiplexer equation.

 1 Karnaugh map minimization techniques were introduced in Chapter 10: Karnaugh Maps .

Slightly More Complex Functions CHAPTER 11 129

 Larger multiplexers are also common in designs: for example, 4:1 multiplexers
with four data inputs feeding one output, and 8:1 multiplexers with eight data
inputs feeding one output. In the case of a 4:1 multiplexer, we will require two
select inputs to choose between the four data inputs (using binary patterns of
00, 01, 10, and 11). Similarly, in the case of an 8:1 multiplexer, we will require
three select inputs to choose between the eight data inputs (using binary pat-
terns of 000, 001, 010, 011, 100, 101, 110, and 111).

 DECODERS
 A decoder uses a binary value, or address, to select between a number of outputs
and to assert the selected output by placing it in its active state. For example,
consider a 2:4 (“ two-to-four ”) decoder as illustrated in Figure 11.5 .

 2 Similar functions can be created with active-high outputs, which mean that when an output
is selected it is asserted to a logic 1.

Select [1:0]

~y[3]
11

10

01

00

0
1
1

0 0
1
0
1

1
1
0

1
0
1

0
1
1

1 1 1 0
1
1
1

Select [1:0] ~y[3:0]

~y[2]

~y[1]

~y[0]

OR

OR

OR

OR

Select [1] Select [0]

|

|

|

|

~y[3] � select [1] | select [0]

~y[2] � select [1] | select [0]

~y[1] � select [1] | select [0]

~y[0] � select [1] | select [0]

2:4 DEC

FIGURE 11.5
 2:4 decoder with
active-low outputs. The 00, 01, 10, and 11 annotations on the decoder symbol represent the possi-

ble values that can be applied to the select [1:0] inputs and are used to indicate
which output will be asserted.

 The truth table shows that when a particular output is selected, it is asserted to
a 0, and when that output is not selected, it returns to a 1. Because the outputs
are asserted to 0s , this device is said to have active-low outputs. An active-low sig-
nal is one whose active state is considered to be logic 0. 2

SECTION 1 Fundamentals130

 The active-low nature of this particular function is also indicated by the bob-
bles (small circles) associated with the symbol’s outputs. Also, the tilde “ � ”
characters prefi xing the output names ~ y[3], ~ y[2], ~ y[1], and ~ y[0] are used to
indicate that these signals are active-low (the use of tilde characters is discussed
in more detail in Appendix A: Assertion-Level Logic).

 Additionally, from our discussions in Chapters 9: Boolean Algebra and 10:
Karnaugh Maps, we know that as each output is 0 for only one input combina-
tion, it is simpler to extract these equations in product-of-sums form. (Observe
the horizontal bars shown over some of the signal names in the equations in
Figure 11.5 . These bars indicate that their associated signals have been logically
inverted; that is, that each of these signals is coming from the output of the rel-
evant NOT gate.)

 Larger decoders are also commonly used in designs: for example, 3:8 decoders
with three select inputs and eight outputs, 4:16 decoders with four select inputs
and sixteen outputs, etc.

 TRI-STATE FUNCTIONS
 There is a special category of gates called tri-state functions whose outputs
can adopt three states: 0, 1, and Z. Let’s fi rst consider a simple tri-state buffer
(Figure 11.6).

 The tri-state buffer’s symbol is based on a standard buffer with an additional
control input known as the enable. The active-low nature of this particular func-
tion’s enable is indicated by the bobble associated with this input on the sym-
bol, and by the tilde “� ” character in its name, ~ enable. (Similar functions with
active-high enables are also commonly used in designs.)

data

~enable

y
VDD (Logic 1)

data
~enable

OR

NOR

I

I

VSS (Logic 0)

0
0
1

0
1
?

y

0
1
Z

~enable data

y

Tr1

Tr2

FIGURE 11.6
 Tri-state buffer with
active-low enable.

Slightly More Complex Functions CHAPTER 11 131

 The Z character in the truth table represents a state known as high-impedance in
which the gate is not driving either of the standard 0 or 1 values. In fact, in the
high-impedance state the gate is effectively disconnected from its output.

 Although Boolean Algebra is not well equipped to represent the Z state, the
implementation of the tri-state buffer is relatively easy to understand. When
the ~ enable input is presented with a logic 1 (its inactive state), the output of
the OR gate is forced to logic 1 and the output of the NOR gate is forced to
logic 0, thereby turning both the Tr 1 and Tr 2 transistors OFF, respectively. With
both transistors turned OFF, the output y is disconnected from VDD and VSS , and
is therefore in the high-impedance state.

 By comparison, when the ~ enable input is presented with a logic 0 (its active
state), the outputs of the OR and NOR gates are determined by the value on the
data input. The circuit is arranged so that only one of the Tr 1 and Tr 2 transistors
can be ON at any particular time. If the data input is presented with a logic 1,
transistor Tr 1 is turned ON, thereby connecting output y to VDD (which equates to
logic 1). By comparison, if the data input is presented with a logic 0, transistor
Tr 2 is turned ON, thereby connecting output y to VSS (which equates to logic 0).

 Tri-state buffers can be used in conjunction with additional control logic to
allow the outputs of multiple devices to drive a common signal. For example,
consider the simple circuit shown in Figure 11.7 .

data [3]

data [2]

data [1]

data [0]

Output

Select [1:0]

11

10

01

00

2:4 DEC

FIGURE 11.7
 Using tri-state buffers to allow multiple devices to drive a common signal.

SECTION 1 Fundamentals132

 The use of a 2:4 decoder with active-low outputs ensures that only one of the
tri-state buffers is enabled at any time. The enabled buffer will propagate the
data on its input to the common output, while the remaining buffers will be
forced into their tri-state condition.

 In hindsight, it now becomes obvious that the standard primitive gates (AND,
OR, NAND, NOR, etc.) depend on internal Z states to function (when any
transistor is turned OFF, its output effectively goes to a Z state). However, the
standard primitive gates are constructed in such a way that at least one of the
transistors connected to the output is turned ON, which means that the output
of a standard gate is always driving either a logic 0 or a logic 1.

 COMBINATIONAL VERSUS SEQUENTIAL FUNCTIONS
 Logic functions are categorized as being either combinational (sometimes
referred to as combinatorial) or sequential. In the case of a combinational func-
tion, the logic values on that function’s outputs are directly related to the cur-
rent combination of values on its inputs. All of the previous example functions
have been of this type.

 By comparison, in the case of a sequential function, the logic values on that
function’s outputs depend not only on its current input values, but also on
previous input values. That is, the output values depend on a sequence of input
values. Because sequential functions remember previous input values, they may
also be referred to as memory elements .

 RS LATCH (NOR IMPLEMENTATION)
 One of the simpler sequential functions is that of an RS latch (“Reset-Set latch ”),
which can be implemented using two NOR gates connected in a back-to-back con-
fi guration (Figure 11.8). In this NOR implementation, both reset and set inputs are
active-high (this is indicated by the lack of bobbles associated with these inputs on
the symbol). The names of these inputs indicate the effect they have on the q out-
put; when reset is active q is reset to logic 0, and when set is active q is set to logic 1.

 The q and ~ q outputs are known as the true and complementary outputs, respec-
tively. 3 In the latch’s normal mode of operation, the value on ~ q is the inverse,
or complement, of the value on q. This is also indicated by the bobble associated

 3 In this case, the tilde “~ ” character prefi xing the output name, ~ q is used to indicate that
this signal is a complementary output. Once again, the use of tilde characters is discussed in
detail in Appendix A: Assertion-Level Logic .

Slightly More Complex Functions CHAPTER 11 133

with the ~ q output on the symbol. The only time ~ q is not the inverse of q
occurs when both reset and set are active at the same time (this unstable state
is discussed in more detail below).

 The truth table column labels q(n +) and ~ q(n +) indicate that these columns refer to
the future values on the outputs. The n + subscripts represent some future time,
or “ now-plus. ” By comparison, the labels q(n) and ~ q(n) used in the body of the
truth table indicate the current values on the outputs. In this case the n sub-
scripts represent the current time, or “ now. ” Thus, the fi rst row in the truth table
indicates that when both reset and set are in their inactive states (logic 0s),
the future values on the outputs will be the same as their current values.

 The secret of the RS latch’s ability to remember previous input values is based
on a technique known as feedback. This refers to the feeding back of the out-
puts as additional inputs into the function. In order to see how this works, let’s
assume that both the reset and set inputs are initially in their inactive states, but
that some previous input sequence placed the latch in its set condition; that is, q
is logic 1 and ~ q is logic 0. Now consider what occurs when the reset input is
placed in its active state and then returns to its inactive state (Figure 11.9).

 As a reminder, if any input to a NOR gate is logic 1, its output will be forced
to logic 0; it’s only if both inputs to the NOR are 0 that the output will be 1.
Thus, when reset is placed in its active (logic 1) state 1 , the q output from
the fi rst gate is forced to 0 2 . This 0 on q is fed back into the second gate

RS latch

set

reset q

~q

NOR

reset NOR
q

~q
set

1
0

 0*

reset

0
0
1
1

q(n�)set

0
1
0
1

~q(n�)

q(n) ~q(n)

0
1

 0*

q � (reset | ~q)

~q � (set | q)

(0* � Unstable state)

|

|

FIGURE 11.8
 RS latch: NOR-based implementation.

SECTION 1 Fundamentals134

3 and, as both inputs to this gate are now 0, the ~ q output is forced to 1
4 . The key point to note here is that the 1 on ~ q is now fed back into the

fi rst gate 5 .

 When the reset input returns to its inactive (logic 0) state 6 , the 1 from the ~ q
output continues feeding back into the fi rst gate 7 , which means that the q
output continues to be forced to 0 8 . Similarly, the 0 on q continues feed-
ing back into the second gate 9 , and as both of this gate’s inputs are now
at 0, the ~ q output continues to be forced to 1 10 . The end result is that the
1 from 7 causes the 0 at 8 which is fed back to 9 , and the 0 on
the set input combined with the 0 from 9 causes the 1 at 10 which is
fed back to 7 . (Phew!)

 Thus, the latch 4 has now been placed in its reset condition, and a self-sustaining
loop has been established. Even though both the reset and set inputs are now
inactive, the q output remains at 0, thereby indicating that reset was the last input
to be in its active state. Once the function has been placed in its reset condition ,

resetreset
q

0

~q

1

NOR

|

set

0
NOR

|

7

9

10

1 0

reset set

Reset goes active

q(n�) ~q(n�)

0 0 q(n) ~q(n)

1 0

0 1

q

~q

NOR

|

set

0
NOR

|

5

1 2 6
8

3

4

0 1

0 1 1 0

1 0 0 1

0

1 1 0* 0*

reset set

Reset goes inactive

q(n�) ~q(n�)

0 q(n) ~q(n)

0 1 1 0

1 0 0 1

1 1 0* 0*

FIGURE 11.9
 RS latch: Reset input
goes active then
inactive.

 4 The term latch—which is commonly associated with a fastening for a door or gate—comes
from the Middle English lacchen, which comes from the Old English loeccan, meaning “to
seize” or “to take hold of. ”

Slightly More Complex Functions CHAPTER 11 135

any subsequent activity on the reset input will have no effect on the outputs,
which means that the only way to affect the function is by means of its set input.

 Now consider what occurs when the set input is placed in its active state and
then returns to its inactive state (Figure 11.10).

 When the set input is placed in its active (logic 1) state 11 , the ~ q output
from the second gate is forced to 0 12 . This 0 on ~ q is fed back into the fi rst
gate 13 and, as both inputs to this gate are now 0, the q output is forced to
1 14 . The key point to note is that the 1 on q is now fed back into the sec-
ond gate 15 .

 When the set input returns to its inactive (logic 0) state 16 , the 1 from the
q output continues feeding back to the second gate 17 , whose ~ q output
continues to be forced to 0 18 . Similarly, the 0 on the ~ q output continues
feeding back into the fi rst gate 19 , and the q output continues to be forced
to 1 20 . The end result is that the 1 at 17 causes the 0 at 18 that is
fed back to 19 , and the 0 on the reset input combined with the 0 at 19
causes the 1 at 20 which is fed back to 17 . (Are we having fun yet?)

19

20

1816

17

0 1

1 0

13

14

15

11
12

resetreset
q

1

~q

0

NOR

|

set

NOR

|

0

reset set

Set goes active

q(n�) ~q(n�)

0 0 q(n) ~q(n)

q

~q

NOR

|

set

NOR

|

0

0 1 1 0

0 1 1 0

1 0 0 1

1 1 0* 0*

reset set

Set goes inactive

q(n�) ~q(n�)

0 0 q(n) ~q(n)

0 1 1 0

1 0 0 1

1 1 0* 0*

FIGURE 11.10
 RS latch: Set input goes
active then inactive.

SECTION 1 Fundamentals136

 Thus, the latch has been returned to its set condition and, once again, a self-sustain-
ing loop has been established. Even though both the reset and set inputs are now
inactive, the q output remains at 1, thereby indicating that set was the last input
to be in its active state. Once the function has been placed in its set condition, any
subsequent activity on the set input will have no effect on the outputs, which
means that the only way to affect the function is by means of its reset input.

 The unstable condition indicated by the fourth row of the RS latch’s truth table
occurs when both the reset and set inputs are active at the same time. In this
case, problems may occur when both reset and set return to their inactive states
simultaneously or too closely together (Figure 11.11).

 When both reset and set are active at the same time, the 1 on reset 21 forces
the q output to 0 22 and the 1 on set 23 forces the ~ q output to 0 24 .
The 0 on q is fed back to the second gate 25 , and the 0 on ~ q is fed back to
the fi rst gate 26 .

 Now, consider what occurs when reset and set go inactive simultaneously
(27 and 28 , respectively). When the new 0 values on reset and set are
combined with the 0 values fed back from q 29 and ~ q 30 , each gate

resetreset
q

~q

NOR

|

set

NOR

|

30

29

reset set

Both reset and set active

q(n�) ~q(n�)

0 0 q(n) ~q(n)

0

0

q

~q

NOR

|

set

NOR

|

26

21 22 27

28
30

29

25

23
24

1

1 1 0

1 0 0 X

0 X

0 1 1 0

1 0 0 1

1 1 0* 0*

reset set

Reset and set go inactive

q(n�) ~q(n�)

0 0 X X

0 1 1 0

1 0 0 1

1 1 0* 0*

FIGURE 11.11
 RS latch: The reset and
set inputs go inactive
together.

Slightly More Complex Functions CHAPTER 11 137

initially sees both of its inputs at 0 and therefore both gates attempt to drive
their outputs to 1. After any delays associated with the gates have been satis-
fi ed, both of the outputs will indeed go to 1.

 When the output of the fi rst gate goes to 1, this value is fed back to the input of
the second gate. At the same time this is happening, the output of the second
gate goes to 1, and this value is fed back to the input of the fi rst gate. Each gate
now has its fed-back input at 1, and both gates therefore attempt to drive their
outputs to 0. As we see, the circuit has entered a metastable condition in which
the outputs oscillate between 0 and 1 values.

 If both halves of the function were exactly the same, these metastable oscil-
lations would continue indefi nitely. But there will always be some differences
(no matter how small) between the gates and their delays, and the function
will eventually collapse into either its reset condition or its set condition. As there
is no way to predict the fi nal values on the q and ~ q outputs, they are indicated
as being in X (“don’t know ”) states (29 and 30). These X states will per-
sist until a valid input sequence occurs on either the reset or set inputs.

 RS LATCH (NAND IMPLEMENTATION)
 An alternative implementation for an RS latch can be realized using two NAND
gates connected in a back-to-back confi guration (Figure 11.12).

~set

q

RS latch

q

~q

~q

NAND

~reset

~set

~reset

~reset ~set

(1* � Unstable state)

q(n�) ~q(n�)

0 0 1* 1*
0 1 1 0
1 0 0 1
1 1 q(n) ~q(n)

&

NAND

&

q � (~set & ~q)

~q � (~reset & q)

FIGURE 11.12
 RS latch: NAND-based implementation.

SECTION 1 Fundamentals138

q

D latch

~q

data

enable

enable data q(n�) ~q(n�)

0 ? q(n) ~q(n)

1 0 0 1

1 1 1 0

&

&

q

~q

NOR

|

NOR
AND

data

enable

AND

|

FIGURE 11.13
 D-type latch with active-high enable.

 In a NAND implementation, both the ~ reset and ~ set inputs are active-low (this
is indicated by the bobbles associated with these inputs on the symbol and by
the tilde “� ” characters in their names). As a reminder, if any input to a NAND
is 0, the output will be forced to 1; it’s only if both inputs to a NAND are 1 that
the output will be 0. Working out how this version of the latch works is left as
an exercise to the reader. 5

 D-TYPE LATCHES
 A more sophisticated function called a D-type (“data-type”) latch can be con-
structed by attaching two AND gates and a NOT gate to the front of an RS latch
(Figure 11.13).

 The enable input is active-high for this confi guration, as is indicated by the lack of a
bobble on the symbol. When the enable input is placed in its active (logic 1) state,
the true and inverted versions of the data input are allowed to propagate through
the AND gates and are presented to the back-to-back NOR gates. If the data input
changes while enable is still active, the outputs will respond to refl ect the new value.

 When the enable input returns to its inactive (logic 0) state, it forces the outputs
of both ANDs to 0, and any further changes on the data input have no effect.

 5 This is where we see if you’ve been paying attention (grin).

Slightly More Complex Functions CHAPTER 11 139

Thus, the back-to-back NOR gates remember the last value they saw from the
data input prior to the enable input going inactive (see also the Setup and Hold
Times topic at the end of this chapter).

 Consider an example waveform (Figure 11.14). While the enable input is in
its active state, whatever value is presented to the data input appears on the q
output and an inverted version appears on the ~ q output. As usual, there will
always be some element of delay between changes on the inputs and corre-
sponding responses on the outputs. When enable goes inactive, the outputs
remember their previous values and no longer respond to any changes on the
data input. As the operation of the device depends on the logic value, or level,
on enable, this input is said to be level-sensitive .

 D-TYPE FLIP-FLOPS
 In the case of a D-type fl ip-fl op (which may also be referred to as a register), the
data appears to be loaded when a transition, or edge, occurs on the clock input,
which is therefore said to be edge-sensitive. (The reason we say “appears to be
loaded when an edge occurs ” is discussed in the following topic.)

 A transition from logic 0 to logic 1 is known as a rising-edge or a positive-edge ,
while a transition from logic 1 to logic 0 is known as a falling-edge or a negative-
edge. Depending on the implementation, a D-type fl ip-fl op’s clock input may
be positive-edge or negative-edge triggered (Figure 11.15).

 The chevrons (arrows “ � ”) associated with the clock inputs on the symbols
indicate that these are edge-sensitive inputs. A chevron without an associated
bobble indicates a positive-edge clock, while a chevron with a bobble indicates a
negative-edge clock. The last rows in the truth tables show that an inactive edge
on the clock leaves the contents of the fl ip-fl ops unchanged (these cases are
often omitted from the truth tables).

data

q

1

0

1

0

1

0

1

0

enable

~q

Time

FIGURE 11.14
 D-type latch: Waveform
for active-high enable.

SECTION 1 Fundamentals140

 Consider an example waveform for a positive-edge triggered D-type fl ip-fl op
(Figure 11.16). As the observer initially has no knowledge as to the contents of
the fl op-fl op, the q and ~ q outputs commence with X (“don’t know ”) values.

 The fi rst rising edge of the clock loads the 0 on the data input into the fl ip-fl op,
which (after a small delay) causes q to change to 0 and ~ q to change to 1. The
second rising edge of the clock loads the 1 on the data input into the fl ip-fl op;
q goes to 1 and � q goes to 0.

q

D flip-flop

~q

data

clock

clock data

Positive-edge triggered

q(n�) ~q(n�)

0 0 1

1 1 0

? q(n) ~q(n)

q

D flip-flop

~q

data

~clock

~clock data

Negative-edge triggered

q(n�) ~q(n�)

0 0 1

1 1 0

? q(n) ~q(n)

FIGURE 11.15
 D-type fl ip-fl ops: Positive and negative-edge triggered.

data

q X X X X X X

X X X X X X

1

0

1

0

1

0

1

0

clock

~q

Time

FIGURE 11.16
 D-type fl ip-fl op: Waveform for active-high enable

Slightly More Complex Functions CHAPTER 11 141

 Some fl ip-fl ops have an additional input called ~ clear or ~ reset which forces
q to 0 and ~ q to 1, irrespective of the value on the data input (Figure 11.17).
Similarly, some fl ip-fl ops have a ~ preset or ~ set input, which forces q to 1 and
~ q to 0; and some have both ~ clear and ~ preset inputs.

 The examples shown in Figure 11.17 refl ect active-low ~ clear inputs, but active-
high equivalents are also available. Furthermore, as is illustrated in Figure
11.17 , these inputs may be either asynchronous or synchronous. In the more com-
mon asynchronous case, the effect of the ~ clear input going active is immedi-
ate and overrides both the clock and data inputs (the “asynchronous ” qualifi er
refl ects the fact that the effect of this input is not synchronized to the clock). By
comparison, in the synchronous case the effect of the ~ clear input is synchro-
nized to the active edge of the clock . 6

1

1

0

~clearclock data

Synchronous clear

q(n�) ~q(n�)

? 0 1

0 0 1

1

0

1

1 1 0

q

D flip-flop

~q

data

clock

~clear

clock~clear data

Asynchronous clear

q(n�) ~q(n�)

?? 0

0 0

1

0

1

1 1

q

D flip-flop

~q

data

clock

~clear

FIGURE 11.17
 D-type fl ip-fl ops: Asynchronous and synchronous ~clear inputs.

 6 The component symbols used in this book are relatively traditional and simple. One dis-
advantage of this is that, as illustrated in Figure 11.17 , there’s no way to tell if a clear or pre-

set input is synchronous or asynchronous without also looking at its truth table. There are
more modern and sophisticated symbol standards that do cover all eventualities, but their
complexity is beyond the scope of this book to explain.

SECTION 1 Fundamentals142

 IMPLEMENTING A D-TYPE FLIP-FLOP

7 If the fi rst latch and second latches had active-high and active-low enables, respectively,
then when we connected these signals together they would be presented to the outside
world as the ~clock input.

When the clock input is a logic 0, the master latch is enabled and passes what-
ever value is presented to its data input through to its outputs (only its q out-
put is actually used in this example). Meanwhile, the slave latch is disabled and
continues to store (and to output) its existing contents.

 When the clock input is subsequently driven to a logic 1, the master latch is dis-
abled and continues to store (and to output) its existing contents. Meanwhile
the slave latch is now enabled and passes whatever value is presented to its data
input (the value from the output of the master latch) through to its outputs.

 Thus, everything is really controlled by voltage levels, but from the outside
world it appears that the fl ip-fl op was loaded by a rising-edge on its clock input.

 There are a number of ways to implement a D-type fl ip-fl op. The most understandable

from our point of view would be to use two D-type latches in series (one after the other)

as illustrated in Figure 11.18 . This is known as a master-slave relationship, where the fi rst

latch is the “master” and the second is the “slave.” For the purposes of this example we’ll

assume that the fi rst latch has an active-low enable and the second has an active-high

enable. When both of these signals are connected together, they are presented to the

outside world as the clock input. 7

q

Master
D-type latch

Positive-edge triggered D-type flip-flop

~q

data

~enable

data

clock

q

Slave
D-type latch

~q

q

~q

data

enable

FIGURE 11.18
 D-type fl ip-fl op: Positive-edge triggered implementation.

Slightly More Complex Functions CHAPTER 11 143

~q(n)

1

0

JK flip-flop

~qk

qj

clock

jclock k q(n�) ~q(n�)

00 q(n)

1 0

0 1

~q(n)1

0

1

1 q(n)

q

T flip-flop

~qclock

� Toggle

clock q(n�) ~q(n�)

~q(n)q(n) � Toggle

FIGURE 11.19
 JK and T fl ip-fl ops.

 JK AND T FLIP-FLOPS
 The majority of examples in this book are based on D-type fl ip-fl ops. However,
for the sake of completeness, it should be noted that there are several other
fl avors of fl ip-fl ops available. Two common types are the JK and T (for
 “ Toggle ”) fl ip-fl ops (Figure 11.19).

 The fi rst row of the JK fl ip-fl op’s truth table shows that when both the j and
k (data) inputs are 0, an active edge on the clock input leaves the contents of
the fl ip-fl op unchanged. The two middle rows of the truth table show that if
the j and k inputs have opposite values, an active edge on the clock input will
effectively load the fl ip-fl op (the q output) with the value on the j input (the ~ q
output will take the complementary value). The last line of the truth table
shows that when both the j and k inputs are 1, an active edge on the clock
causes the outputs to toggle to the inverse of their previous values. 8 By com-
parison, the T fl ip-fl op doesn’t have any data inputs; the outputs simply toggle
to the inverse of their previous values on each active edge of the clock input.

 8 This may be the origin of the term fl ip-fl op, because the outputs “ fl ip ” and “ fl op ” back and
forth.

SECTION 1 Fundamentals144

 SHIFT REGISTERS
 As was previously noted, another term for a fl ip-fl op is register. Functions
known as shift registers—which facilitate the shifting of binary data one bit at a
time—are commonly used in digital systems. Consider a simple 4-bit shift reg-
ister constructed using D-type fl ip-fl ops (Figure 11.20).

 This particular example is based on positive-edge triggered D-type fl ip-fl ops
with active-low ~ clear inputs (in this case we’re only using each fl ip-fl op’s q
output). Also, this example is classed as a Serial-In-Parallel-Out (SIPO) shift reg-
ister, because data is loaded in serially (one bit after the other) and read out in
parallel (side by side).

 When the ~ clear input is presented with a logic 0 (its active state), all of the
q outputs are forced to 0. When the ~ clear input is set to 1 (its inactive state),
a positive-edge on the clock input loads the value on the serial_in input into
the fi rst fl ip-fl op, dff[0]. At the same time, the value that used to be in dff[0] is
loaded into dff[1], the value that used to be in dff[1] is loaded into dff[2], and the
value that used to be in dff[2] is loaded into dff[3].

 This may seem a tad weird-and-wonderful the fi rst time you see it, but the way
in which this works is actually quite simple (and, of course, capriciously cun-
ning). Each fl ip-fl op exhibits a delay between seeing an active edge on its clock

dff[0]

serial-in

clock

~clear

dff[1]

q[0] q[1]

q[3]

q[2]

q[1]

q[0]

q[2]

dff[2] dff[3]

d q d q d q d q

FIGURE 11.20
 SIPO shift register.

Slightly More Complex Functions CHAPTER 11 145

input and the ensuing response on its q output. These delays provide suffi cient
time for the next fl ip-fl op in the chain to load the value from the previous stage
before that value changes. Consider an example waveform where a single logic
1 value is migrated through the shift register (Figure 11.21).

 When we start, all of the fl ip-fl ops contain X (“don’t know ”) values. When the
~ clear input is placed in its active state (logic 0), all of the fl ip-fl ops are cleared
to 0. When the fi rst active edge occurs on the clock input, the serial_in input is
1, so this is the value that’s loaded into the fi rst fl ip-fl op. At the same time, the
original 0 value from the fi rst fl ip-fl op is loaded into the second, the original
0 value from the second fl ip-fl op is loaded into the third, and the original 0
value from the third fl ip-fl op is loaded into the fourth.

 When the next active edge occurs on the clock input, the serial_in input is 0, so
this is the value that’s loaded into the fi rst fl ip-fl op. At the same time, the origi-
nal 1 value from the fi rst fl ip-fl op is loaded into the second, the 0 value from
the second fl ip-fl op is loaded into the third, and the 0 value from the third fl ip-
fl op is loaded into the fourth.

 Similarly, when the next active edge occurs on the clock input, the serial_in
input is still 0, so this is the value that’s loaded into the fi rst fl ip-fl op. At the
same time, the 0 value from the fi rst fl ip-fl op is loaded into the second, the 1

q[0]

1

0

1

0

1

0

1
0

1
0

1
0

1
0

clock

Time

~clear

q[1]

q[2]

q[3] X X

X X

X X

X X

serial_in

FIGURE 11.21
 Waveform for SIPO shift register.

SECTION 1 Fundamentals146

value from the second fl ip-fl op is loaded into the third, and the 0 value from
the third fl ip-fl op is loaded into the fourth. And so it goes …

 Other common shift register variants are the Parallel-In-Serial-Out (PISO), and
the Serial-In-Serial-Out (SISO). For example, consider a 4-bit SISO shift register
(Figure 11.22).

dff[3]

q

~clear

d

clock

q[3]

dff[2]

qd

dff[1]

qd

dff[0]

qd
q[2] q[1] q[0]d[1] d[0]d[2]d[3]

~q[3] ~q[0]~q[1]~q[2]

Combinational
logic

d[3:0]
q[3:0]

~q[3:0]

FIGURE 11.23
 Modulo-16 binary
counter.

dff[0]

q

~clear

d
serial-in

clock

q[0]

dff[1]

qd

dff[2]

qd

dff[3]

qd
q[1] q[2] serial-out

FIGURE 11.22
 SISO shift register.

 COUNTERS
 Counter functions are also commonly used in digital systems. The number of
states that the counter will sequence through before returning to its original
value is called the modulus of the counter. For example, a function that counts
from 0000 2 to 1111 2 in binary (or 0 to 15 in decimal) has a modulus of 16 and
would be called a modulo-16, or mod-16, counter. Consider a modulo-16 binary
counter implemented using D-type fl ip-fl ops (Figure 11.23).

Slightly More Complex Functions CHAPTER 11 147

 This particular example is based on positive-edge triggered D-type fl ip-fl ops
with active-low ~ clear inputs. The four fl ip-fl ops are used to store the current
count value that is displayed on their q[3:0] outputs. When the ~ clear input is
set to 1 (its inactive state), a positive-edge on the clock input causes the counter
to load the next value in the count sequence.

 A block of combinational logic is used to generate the next value, d[3:0], which
is based on the current value q[3:0] (Figure 11.24). Note that there is no need
to create the inverted versions of q[3:0] used in these equations (these are the
signals with the horizontal bars drawn over them), because these signals are
already available from the fl ip-fl ops in the form of their ~ q[3:0] outputs.

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0

0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0

1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

q[3:0] d[3:0]

Current
value

Next
value

d[3]� (q[3] & q[1]) | (q[3] & q[2]) | (q[3] & q[0]) | (q[3] & q[2] & q[1] & q[0])

d[2]� (q[2] & q[1]) | (q[2] & q[0]) | (q[2] & q[1] & q[0])

d[1]� (q[1] & q[0]) | (q[1] & q[0])

d[0]� (q[0])

00
q[3:2]

q[1:0]

d[3] � d[2] �

01

1

1

1

1

1

11

11 10

00

01

11

10

00
q[3:2]

q[1:0] 01

1

1 1

1

11 10

00

01

11

10

1

1

1

1

1

00
q[3:2]

q[1:0]

d[1] � d[0] �

01

1 11

1 1 1 1

1 1 1 1

1

1 1 11

11 10

00

01

11

10

00
q[3:2]

q[1:0] 01 11 10

00

01

11

10

FIGURE 11.24
 Generating the next count value.

 It’s important to note that we don’t need to implement a binary counter, per se
(by which we mean a counter that counts in a binary sequence). For example, a
4-bit binary counter would follow the sequence 0000 2, 0001 2, 0010 2, 0011 2, …
1110 2, 1111 2, at which point it would cycle back to 0000 2 and start all over again.
If we wished, our counter could follow a Gray code sequence (see Appendix D:
Gray Codes), or we could use a Linear Feedback Shift Register (LFSR) approach
[see Appendix E: Linear Feedback Shift Registers (LFSRs)].

SECTION 1 Fundamentals148

 SETUP AND HOLD TIMES
 One point we’ve glossed over thus far is the fact that there are certain timing
requirements associated with fl ip-fl ops. In particular, there are two parameters
called the setup and hold times that describe the relationship between the fl ip-
fl op’s data and clock inputs (Figure 11.25).

 The waveform shown here is a little different from those we’ve seen before.
What we’re trying to indicate is that when we start (on the left-hand side), the
value presented to the data input may be a 0 or a 1, and it can change back and
forth as often as it pleases. However, it must settle one way or the other before
the setup time; otherwise when the active edge occurs on the clock we can’t
guarantee what will happen. Similarly, the value presented to the data input
must remain stable for the hold time following the clock or, once again, we can’t
guarantee what will happen. In our illustration, the period for which the value
on the data input must remain stable is shown in pink.

 The setup and hold times shown in Figure 11.24 are reasonably understand-
able. However, things can sometimes become a little confusing, especially in
the case of today’s Deep Submicron (DSM) integrated circuit technologies. 9 The
problem is that we may sometimes see so-called negative setup or negative hold
times (Figure 11.26).

 Once again, the periods for which the value on the data input must remain
stable are shown in pink. These effects, which may seem a little strange at fi rst,
are caused by internal delay paths inside the fl ip-fl op.

 Last but not least, we should note that there will also be setup and hold times
between the clear (or reset) and preset (or set) inputs and the clock input. Also,
there will be corresponding setup and hold times between the data, clear (or
reset), and preset (or set) inputs and the enable input on D-type latches (phew!).

 9 Integrated circuits (and DSM technologies) are introduced in Chapter 14: Integrated Circuits
(ICs) .

q

~q
clock

hold

data

clock

D-type flip-flop data

setupFIGURE 11.25
 Setup and hold times.

Slightly More Complex Functions CHAPTER 11 149

 BRICK BY BRICK
 Let us pause here for a brief philosophical moment. Consider, if you will, a
brick formed from clay. Now, there’s not a lot you can do with a single brick,
but when you combine thousands and thousands of bricks together you can
create the most tremendous structures. At the end of the day, the Great Wall of
China is no more than a pile of bricks, molded by man’s imagination. 10

 In the world of the electronics engineer, silicon is the clay, primitive logic gates
are the bricks, and the functions described above are simply building blocks. 11
Any digital system, even one as complex as a supercomputer, is constructed
from building blocks like comparators, multiplexers, shift registers, and coun-
ters. Once you understand the building blocks, there are no ends to the things

you can achieve!

data

negative setup

hold

data

negative hold
setup

clock

clock

(a) negative
setup

(b) negative
hold

FIGURE 11.26
 Negative setup and
hold times.

 10 But at approximately 2400 km in length, it’s a very impressive pile of bricks (I’ve walked—
and climbed—a small portion of the beast and it fair took my breath away).
 11 We might also note that transistors and clay share something in common—they both con-
sist predominantly of silicon!

This page intentionally left blank

151

 “ IS THAT A GIZMO IN YOUR POCKET, OR . . . ”
 Consider a coin-operated machine that accepts nickels and dimes 1 and, for the
princely sum of fi fteen cents, dispenses some useful article called a “ gizmo ”
that the well-dressed man-about-town could not possibly be without. 2 We may
consider such a machine to comprise three main blocks: a receiver that accepts
money, a dispenser that dispenses the “ gizmo ” along with any change, and a
controller that oversees everything and makes sure things function as planned
(Figure 12.1).

 The connections marked nickel , dime, dispense, change, and acknowledge

represent digital signals carrying logic 0 and 1 values. The user can deposit
nickels and dimes into the receiver in any order, but may only deposit one coin
at a time. When a coin is deposited, the receiver determines its type and sets
the corresponding signal (nickel or dime) to a logic 1.

 The operation of the controller is synchronized by the clock signal. On a ris-
ing edge of the clock, the controller examines the nickel and dime inputs to see

 CHAPTER 12 CHAPTER 12

 State Machines

 1 For the benefi t of those readers who do not reside in the United States, nickels and dimes
are American coins worth fi ve and ten cents, respectively.
 2 I always carry two in case of an emergency.

Receiver Controller
Coins in

nickel dispense

dime change

acknowledge

clock

Gizmo and
change out

Dispenser

FIGURE 12.1
 Block diagram of a
coin-operated machine.

SECTION 1 Fundamentals152

if any coins have been deposited. The controller keeps track of the amount of
money deposited and determines if any actions are to be performed.

 Every time the controller inspects the nickel and dime signals, it sends an acknowl-

edge signal back to the receiver. The acknowledge signal informs the receiver
that the coin has been accounted for, and the receiver responds by resetting the
nickel and dime signals to logic 0 and awaiting the next coin. The acknowledge

signal can be generated in a variety of ways that are not particularly relevant here.

 When the controller decides that suffi cient funds have been deposited, it instructs
the dispenser to deal out a “gizmo” and any change (if necessary) by setting the
dispense and change signals to logic 1, respectively.

 STATE DIAGRAMS
 A useful level of abstraction for a function such as the controller is to consider
it as consisting of a set of states through which it sequences. The current state
depends on the previous state combined with the previous values on the nickel
and dime inputs. Similarly, the next state depends on the current state combined
with the current values on the nickel and dime inputs. The operation of the con-
troller may be represented by means of a state diagram, which offers a way to
view the problem and to describe a solution (Figure 12.2).

5-cents

15-cents 20-cents

10-cents0-cents

nickel � 0
dime � 1

nickel � 0
dime � 0

nickel � 0
dime � 1

dispense � 0
change � 0

nickel � 0
dime � 0

dispense � 0
change � 0

nickel � 0
dime � 0

Initial state

? � don’t care

nickel � ?
dime � ? dispense � 1

change � 1

nickel � 0
dime � 1

dispense � 1
change � 0

nickel � ?
dime � ?

dispense � 0
change � 0

nickel � 1
dime � 0

nickel � 1
dime � 0 nickel � 1

dime � 0

FIGURE 12.2
 State diagram for the controller.

State Machines CHAPTER 12 153

 The states are represented by the circles labeled 0- cents , 5- cents, 10- cents, 15-

 cents , and 20- cents, and the values on the dispense and change outputs are asso-
ciated with these states. The arcs connecting the states are called state transitions
and the values of the nickel and dime inputs associated with the state transitions
are called guard conditions. The controller will only sequence between two states
if the values on the nickel and dime inputs match the guard conditions.

 Let’s assume that the controller is in its initial state of 0- cents. The values of the
nickel and dime inputs are tested on every rising edge on the clock . 3 As long as
no coins are deposited, the nickel and dime signals remain at 0 and the control-
ler remains in the 0- cents state. Once a coin is deposited, the next rising edge
on the clock will cause the controller to sequence to the 5- cents or the 10- cents
states depending on the coin’s type. It is at this point that the controller sends
an acknowledge signal back to the receiver, instructing it to reset the nickel and
 dime signals back to logic 0 and to await the next coin.

 Observe that the 0- cents , 5- cents, and 10- cents states have state transitions that
loop back into themselves (the ones with associated nickel � 0 and dime � 0
guard conditions). These indicate that the controller will stay in whichever
state it is currently in until a new coin is deposited.

 So, at this stage of our discussions, the controller is either in the 5- cents or
the 10- cents state depending on whether the fi rst coin was a nickel or a dime,
respectively. What happens when the next coin is deposited? Well, this depends
on the state we’re in and the type of the new coin. If the controller is in the 5-

 cents state, then a nickel or dime will move it to the 10- cents or 15- cents states,
respectively. Alternatively, if the controller is in the 10- cents state, then a nickel
or dime will move it to the 15- cents or 20- cents states, respectively.

 When the controller reaches either the 15- cents or 20- cents states, the next clock
will cause it to dispense a “ gizmo ” and return to its initial 0- cents state (in the case
of the 20- cents state, the controller will also dispense a nickel in change).

 STATE TABLES
 Another form of representation is that of a state table. This is similar to a truth table
(inputs on the left and corresponding outputs on the right), but it also includes
the controller’s current state as an input and its next state as an output (Figure 12.3).

 3 The controller is known to sequence between states only on the rising edge of the clock, so
displaying this signal on every transition in the state diagram would be redundant.

SECTION 1 Fundamentals154

 In this instance, the clock signal has been included for purposes of clarity (it’s
only when there’s a rising edge on the clock that the outputs are set to the val-
ues shown in that row of the table). As for the state diagram introduced in the
previous topic, however, displaying this signal is somewhat redundant and it is
often omitted.

 STATE MACHINES
 The actual implementation of a function such as the controller is called a state
machine. In fact, when the number of states is constrained and fi nite, this is
more usually called a Finite State Machine (FSM). The heart of a state machine
consists of a set of registers 4 known as the state variables. Each state, 0-cents , 5-

 cents , 10- cents, etc. is assigned a unique binary pattern of 0 s and 1 s, and the
pattern representing the current state is stored in the state variables.

 The two most common forms of synchronous, or clocked, state machines are
known as Moore and Mealy machines after the men who formalized them.
A Moore machine is distinguished by the fact that the outputs are derived only
from the values in the state variables (Figure 12.4). The controller function fea-
tured in this discussion is a classic example of a Moore machine.

Current
state

Next
stateclock nickel dime dispense change

0-cents ↑ 0 0 0 0 0-cents

0-cents ↑ 1 0 0 0 5-cents

0-cents ↑ 0 1 0 0 10-cents

5-cents ↑ 0 0 0 0 5-cents

5-cents ↑ 1 0 0 0 10-cents

5-cents ↑ 0 1 0 0 15-cents

10-cents ↑ 0 0 0 0 10-cents

10-cents ↑ 1 0 0 0 15-cents

10-cents ↑ 0 1 0 0 20-cents

15-cents ↑ ? ? 1 0 0-cents

20-cents ↑ ? ? 1 1 0-cents

FIGURE 12.3
 State table for the controller.

 4 For the purposes of these discussions, we’ll assume that these registers are D-type fl ip-fl ops
as were introduced in Chapter 11: Slightly More Complex Functions .

State Machines CHAPTER 12 155

 By comparison, the outputs from a Mealy machine may be derived from a combina-
tion of the values in the state variables and one or more of the inputs (Figure 12.5).

 In both of the Moore and Mealy forms, the input logic consists of primitive
gates such as AND, NAND, OR, and NOR. These combine the values on the
inputs with the current state (which is fed back from the state variables) to gen-
erate the pattern of 0s and 1s representing the next state. This new pattern of 0s
and 1s is presented to the inputs of the state variables and will be loaded into
them on the next rising edge of the clock.

 The output logic also consists of standard primitive logic gates that decode the
values stored in the state variables (representing the current state) and generate
the appropriate values on the outputs.

 STATE ASSIGNMENT
 A key consideration in the design of a state machine is that of state assignment,
which refers to the process by which the states are assigned to the binary pat-
terns of logic 0s and 1s that are to be stored in the state variables.

 One common form of state assignment requiring the minimum number of
registers is known as binary encoding. Each register can only contain a single
binary digit, so it can only be assigned a value of 0 or 1. Two registers can be
assigned four binary values (00, 01, 10, and 11), three registers can be assigned

Input
logic

State
variable
registers

(current state)

Inputs
Next
state

Current state

clock

Outputs
Output
logic

FIGURE 12.4
 Block diagram of
a generic Moore
machine.

Input
logic

Inputs State
variable
registers

(current state)

Next
state

Current state

clock

Outputs
Output
logic

FIGURE 12.5
 Block diagram of
a generic Mealy
machine.

SECTION 1 Fundamentals156

eight binary values (000, 001, 010, 011, 100, 101, 110, and 111), and so forth.
The controller used in our coin-operated machine consists of fi ve unique states,
and therefore requires a minimum of three state variable registers.

 The actual process of binary-encoded state assignment is a nontrivial problem.
In the case of our controller function, there are 6720 possible combinations 5
by which fi ve states can be assigned to the eight binary values provided by three
registers. Each of these solutions may require a different arrangement of prim-
itive gates to construct the input and output logic, which in turn affects the
maximum frequency that can be used to drive the system clock. Additionally,
the type of registers used to implement the state variables also affects the sup-
porting logic (the discussions here are based on the use of D-type fl ip-fl ops).

 Assuming that full use is made of don’t care states, an analysis of the various
binary-encoded solutions for our controller yields the following …

 138 solutions requiring 7 product terms

 852 solutions requiring 8 product terms

 1876 solutions requiring 9 product terms

 3094 solutions requiring 10 product terms

 570 solutions requiring 11 product terms

 190 solutions requiring 12 product terms

 … where a product term is a group of literals linked by & (AND) operators—for
example, (a & b & c)—and a literal is any true or inverted variable. Thus, the
product term (a & b & c) contains three literals (a , b, and c).

 But wait, there’s more! A further analysis of the 138 solutions requiring only
seven product terms yields the following:

 66 solutions requiring 17 literals

 24 solutions requiring 18 literals

 48 solutions requiring 19 literals

 Thus, the chances of a random assignment resulting in an optimal solution
are relatively slight. Fortunately, there are computer programs available to aid

 5 This number would be somewhat reduced if all the “mirror-image” combinations were
taken into account, but that would not signifi cantly lessen the complexity of determining
the optimal combination.

State Machines CHAPTER 12 157

designers in this task. 6 One solution resulting in the minimum number of
product terms and literals is shown in Figure 12.6 .

 A truth table for the controller function can now be derived from the state table
shown in Figure 12.3 by replacing the assignments in the current state column
with the corresponding binary patterns for the state variable outputs (q2, q1,
and q0), and replacing the assignments in the next state column with the cor-
responding binary patterns for the state variable inputs (d2 , d1, and d0). The
resulting equations can then be derived from the truth table using standard
algebraic or Karnaugh map techniques. As an alternative, a computer program
can be used to obtain the same results in less time with far fewer opportunities
for error. 7 Whichever technique is employed, the state assignments above lead
to the following minimized Boolean equations:

d0 | (q0 & q2 & nickel) | (q0 & nickel)

d1

� (q0 & q2 & dime)

 =

d2 = | (q2 & nickel & dime)

(q0 & q2 & dime)

(q0 & q2) || (q0 & q2 & dime)

dispense =

change = (q1)

(q0 & q2)

d2 q2

d1 q1

d0

clock

State variable
registers

q0

Current state

0

0

1

1

q1

0

0

0

0

q2

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

q0

d1
Next state

d2 d0

State
assignments

State
assignments

10-cents

15-cents

—

20-cents

0-cents

5-cents

—

—

FIGURE 12.6
 Example binary-encoded state assignment.

 6 I used the program BOOL, which was created by my friend Alon Kfi r (a man with a size-16
brain if ever there was one).
 7 Once again, I used BOOL (“What’s the point of barking if you have a dog? ” as they say in
England).

SECTION 1 Fundamentals158

 The product terms shown in bold appear in multiple equations. However, regard-
less of the number of times a product term appears, it is only counted once
because it only has to be physically implemented once. Similarly, the literals used
to form product terms that appear in multiple equations are only counted once.

 Another common form of state assignment is known as one-hot encoding, in
which each state is represented by an individual register. In this case, our con-
troller with its fi ve states would require fi ve register bits. The one-hot technique
typically requires a greater number of logic gates than does binary encoding.
However, as the logic gates are used to implement simpler equations, the one-
hot method results in faster state machines that can operate at higher clock
frequencies.

 Last but not least, some designs require the use of state assignments based on
Gray codes, such that transitioning between any pair of states involves chang-
ing the value of only a single state variable (see also Appendix D: Gray Codes for
more discussion).

 DON’T CARE STATES, UNUSED STATES, AND
LATCH-UP CONDITIONS
 It was previously noted that the analysis of the binary-encoded state assign-
ment made full use of don’t care states. 8 This allows us to generate a solution
that uses the least number of logic gates, but there are additional consider-
ations that must now be discussed in more detail.

 The original defi nition of our coin-operated machine stated that it is only pos-
sible for a single coin to be deposited at a time. Assuming this to be true, then
the nickel and dime signals will never be assigned logic 1 values simultaneously.
Thus, the designer (or a computer program) can use this information to assign
don’t care states to the outputs for any combination of inputs that includes a
logic 1 on both of the nickel and dime signals.

 Additionally, the three binary-encoded state-variable registers provide eight
possible binary patterns, of which only fi ve were used. The analysis above was
based on the assumption that don’t care states can be assigned to the outputs
for any combination of inputs that includes one of the unused patterns on the
state variables. This assumption also requires further justifi cation.

 8 The concept of don’t care states was introduced in Chapter 10: Karnaugh Maps .

State Machines CHAPTER 12 159

 When the coin-operated machine is fi rst powered-up, each state variable reg-
ister can potentially initialize with a random logic 0 or 1 value. The controller
could therefore power-up with its state variables containing any of the eight
possible patterns of 0s and 1s . For some state machines this would not be an
important consideration, but this is not true in the case of our coin-operated
machine. Suppose the controller were to power-up in the 20- cents state, for
example, in which case it would immediately dispense a “ gizmo ” and fi ve cents
change. The owner of such a machine may well be of the opinion that this was
a less-than-ideal feature.

 Alternatively, the controller could power-up with its state variables in one
of the unused combinations. Subsequently, the controller could sequence
directly—or via one or more of the other unused combinations—to any of
the defi ned states. In a worst-case scenario, the controller could remain in
the current unused combination indefi nitely or it could sequence endlessly
between unused combinations; these worst-case scenarios are known as latch-
up conditions.

 One method of avoiding latch-up conditions is to assign additional, dummy
states to each of the unused combinations and to defi ne state transitions from
each of these dummy states to the controller’s initialization state of 0-cents.
Unfortunately, in the case of our coin-operated machine, this technique would
not affect the fact that the controller could “wake up ” in a valid state other
than 0- cents. An alternative is to provide some additional circuitry to gener-
ate a Power-on Reset (PoR) signal—for example, a single pulse that occurs only
when the power is fi rst applied to the machine. The power-on reset can be used
to force the state variable registers into the pattern associated with the 0-cents
state. The state assignment analysis presented in the previous topic assumed
the use of such a power-on reset.

This page intentionally left blank

161

 SETTING THE SCENE
 As we began our discussions in Chapter 1: Analog Versus Digital by separating
the analog and digital views of the world, it seems appropriate to close this sec-
tion of the book by reuniting them.

 In the early days of electronics, systems were predominantly analog in nature. 1
Today, analog functions are still used for a wide variety of tasks, but digital
implementations are preferable in many cases.

 Why might a digital system be preferable to its analog counterpart? Well, as a
simple example, let’s cast our minds back into the mists of time and consider
VHS video tapes, which were analog in nature. 2 By this we mean that video
data was stored on the tape as an analog (constantly varying) signal. The prob-
lem is that analog representations of this type are susceptible to noise effects.

 Let’s say that you took a VHS video of Granny’s birthday and that you made a
copy of this video for your Auntie Barbara. Unfortunately, the process of copy-
ing analog signals is not perfect. Small errors (noise) will creep in, resulting in
unwanted visual artifacts. Now, the fi rst copy might not be too bad, but sup-
pose Auntie Barbara makes a copy of her copy to send to Uncle Frank, and that
he subsequently makes a copy of his copy to send to Cousin Bob.

 The result is that we now have noise on top of noise on top of noise, and it
doesn’t take long before downstream copies start to look absolutely horrible.

 CHAPTER 13 CHAPTER 13

 Analog-to-Digital and
Vice Versa

 1 I remember playing with analog computers at college, for example.
 2 VHS systems were launched in 1976. DVDs came along in the latter half of the 1990s. By
the early 2000s, DVDs had become the more popular media. At the time of this writing, a
lot of folks still have VHS tapes and players lying around the home (especially those who
have a lot of home movies), but you can’t get mainstream movies on VHS tapes anymore.

SECTION 1 Fundamentals162

 The alternative that we use today (in the form of CDs and DVDs, for example)
is to take real-world analog signals (music, video, etc.) and convert them into
digital representations. Once we have our video of Granny’s birthday in the
digital domain—stored as a series of numbers with associated error correcting
codes and suchlike—we can make copies of copies of copies ad infi nitum with-
out suffering any degradation.

 The point of all of this is that, while some systems operate solely on digital
data, others have to interact with the analog world. It may be necessary to con-
vert an analog input into a form that can be manipulated by the digital system,
or to transform an output from a digital system into the analog realm. As is
illustrated in Figure 13.1 , these tasks are performed by Analog-to-Digital (A/D)
and Digital-to-Analog (D/A) converters, respectively (these may also be referred
to as ADCs and DACs).

 In this example, we commence on the left-hand side with a signal in the ana-
log domain. This signal is passed through an A/D converter, which translates
it into a digital equivalent. We can now process this data to our heart’s con-
tent using digital techniques; this is known as Digital Signal Processing (DSP).
Finally, we take the output from the digital system, pass it through a D/A con-
verter, and return the result to the real world in which we live. Let’s consider all
of this in a little more detail …

 ANALOG-TO-DIGITAL
 A transducer is a device that converts input energy of one form into output
energy of another. Analog effects can manifest themselves in a variety of dif-
ferent ways such as heat and pressure. In order to be processed by a digital sys-
tem, the analog quantity must be detected and converted into a suitable form
by means of an appropriate transducer called a sensor. For example, a micro-
phone is a sensor that detects sound and converts it into a corresponding

Analog-to-digital
converter Digital system

Digital-to-analog
converter

A/D D D/A

Analog domain Digital domain Analog domain

FIGURE 13.1
 Analog-to-Digital (A/D)
and Digital-to-Analog
(D/A) converters.

Analog-to-Digital and Vice Versa CHAPTER 13 163

voltage. The analog-to-digital conversion process can be represented as shown
in Figure 13.2 .

 The output from the sensor typically undergoes some form of signal process-
ing, such as fi ltering and amplifi cation, before being passed to the A/D con-
verter. This signal processing is generically referred to as conditioning. The A/D
converter accepts the conditioned analog voltage and converts it into a series of
equivalent digital values by sampling and quantization (Figure 13.3).

 The sampling usually occurs at regular time intervals and is triggered by the
digital part of the system. The complete range of values that the analog signal
can assume is divided into a set of discrete bands or quanta. At each sample
time, the A/D converter determines which band the analog signal falls into

Analog-to-digital
converter

A/D

Analog domain Digital domain

Sensor
Signal processing

(conditioning)

To digital
system

FIGURE 13.2
 The analog-to-digital
conversion process.

Analog
signal
range

3-bit digital
equivalent

000 001 100 111

111

110

101

100

011

010

001

000

111 100 110 110 010 001 011 100

Sample times Sampled points

Sampled values

FIGURE 13.3
 The sampling and
quantization of an
analog signal.

SECTION 1 Fundamentals164

(this is the “quantization” part of the process) and outputs the equivalent
binary code for that band.

 The main factor governing the accuracy of the conversion is the number of bands
used. For example, a 3-bit code can represent only eight bands, each encompassing
12.5% of the analog signal’s range, while a 12-bit code can represent 4096 bands,
each encompassing 0.025% of the signal’s range. This means that we have a classi-
cal engineering trade-off. In the case of a music CD, for example, we want the best
sound we can get, but the more bits we use to represent each sample, the more data 3
we have to store and the more processing we have to perform. This also leads us to
the concept of quantization noise or quantization error, which refers to the difference
between the original real-world analog signal and the quantized digital value caused
by rounding 4 (or truncating) the analog signal to the nearest digital quanta.

 DIGITAL-TO-ANALOG
 A D/A converter accepts a digital code and transforms it into a useful corre-
sponding analog current or voltage by means of an appropriate transducer
called an actuator. For example, a loudspeaker is an actuator that converts an
electrical signal into sound. The digital-to-analog conversion process can be
represented as shown in Figure 13.4 .

 The conversions usually occur at regular time intervals and are triggered by a
clock signal from the digital part of the system. The output from the D/A con-
verter typically undergoes some form of conditioning before being passed to
the actuator. For example, in the case of an audio system, the “staircase-like”

Digital-to-analog
converter

Analog domainDigital domain

Signal processing
(conditioning)

D/A

Actuator

From
digital system

FIGURE 13.4
 The digital-to-analog
conversion process.

 3 As we discussed in Chapter 7, the term data is the plural of the Latin datum, meaning
 “ something given. ” The plural usage is still common, especially among scientists, so it’s not
unusual to see expressions like “These data are … ” However, it is becoming increasingly
common to use data to refer to a singular group entity such as information; thus, an expres-
sion like “This data is … ” would also be acceptable to a modern audience.
 4 See Appendix H: Rounding Algorithms 101 , for discussions on different rounding algorithms.

Analog-to-Digital and Vice Versa CHAPTER 13 165

signal coming out of the D/A converter will be “ smoothed ” before being passed
to an amplifi er (not shown in Figure 13.4) and, ultimately, to the loudspeaker.

 DSP VERSUS DSP
 It’s hard to read an electronics-related article these days without running across
the term DSP, but what does this actually mean? Depending on your back-
ground, your knee-jerk reaction may be “ DSP means Digital Signal Processing, ”
or “ DSP refers to a Digital Signal Processor. ” In fact, if you were feeling particu-
larly bold, you may even have said: “ DSP refers to a Digital Signal Processor per-
forming Digital Signal Processing. ” (This latter option would be very clever of you
but, as we shall see, this is not necessarily the case.)

 Actually, considering the fact that the term DSP is so ubiquitous these days, there’s
a surprising amount of confusion about all of this. For example, do you actually
need a digital signal processor to perform digital signal processing? It may surprise
you to hear that the short answer is “ No! ” (Of course, the longer answer is: “ Well,
it all depends on what you mean by a ‘ Digital Signal Processor, ’ doesn’t it? ”)

 Let’s take a step back. First we’ll set the scene by considering the concept of Analog
Signal Processing (ASP); next we’ll ponder what we mean by Digital Signal Processing
(DSP); and fi nally we’ll consider how we might go about actually doing it.

 ANALOG SIGNAL PROCESSING (ASP)
 As we discussed in Chapter 1: Analog Versus Digital, in the context of electronics,
an analog device or system is one that uses continuously variable signals to repre-
sent information for input, processing, output, and so forth. On this basis, Analog
Signal Processing (ASP) involves the processing of signals in the analog domain.

 A really simple form of Analog Signal Processor (ASP) would be a basic analog
amplifi er. Suppose we took an analog signal from a guitar, for example, fed it
into the input to the amplifi er, and used the amplifi ed output to drive a loud-
speaker, as illustrated in Figure 13.5 .

Analog input
from guitar

Simple
amplifier Amplified analog output

to loudspeaker

FIGURE 13.5
 Simple analog signal processing scenario.

SECTION 1 Fundamentals166

 In this case, our analog signal processing simply involves generating a larger ver-
sion of our input signal. A slightly more complex form of analog signal processing
might be to use a signal generator to output a sine wave, and to use the amplitude
of this sine wave to drive a voltage-controlled amplifi er, as illustrated in Figure 13.6 .

 Analog signal processing can be very effective for a variety of tasks, but it tends to be
limited to things like amplifi cation, fi ltering, signal conditioning, and similar activi-
ties. One classic example would be guitar sound-effect generators such as reverb and
echo. Another classic example would be Amplitude Modulation (AM) radio.

 Analog techniques can achieve large results using relatively few components,
but only for relatively simple (conceptually speaking) tasks. If we want to per-
form more complex signal processing activities, it’s generally easier to do so in
the digital domain.

 DIGITAL SIGNAL PROCESSING (DSP)
 Perhaps not surprisingly, the term digital signal processing refers to processing data
(signals) in the digital domain. Let’s stick with our guitar-based examples for a
while. As we discussed earlier in this chapter, we can take an analog signal such as
the output from an electric guitar and pass it through an Analog-to-Digital (A/D)
converter, which translates it into a series of digital values (Figure 13.7).

 We can now process these digital values in the digital domain. For example, we
might apply a variety of signal processing algorithms to simulate reverb, delay,
or distortion effects to the signal. Following this processing, we can pass our
modifi ed digital values through a Digital-to-Analog (D/A) converter, amplify the
resulting analog signal, and use it to drive a loudspeaker.

Analog input
from guitar

Amplified (processed) analog
output to loudspeaker

Signal
generator

Voltage-
controlled
amplifier

Sine wave

FIGURE 13.6
 A slightly more complex analog signal processing implementation.

Analog-to-Digital and Vice Versa CHAPTER 13 167

 DSP EXAMPLES
 These days we are surrounded by devices that are performing digital signal pro-
cessing activities. For example, the Graphics Processing Unit (GPU) driving my
computer display is performing DSP as I pen these words.

 Do you have an MP3 player? If so, have you ever taken one of your music CDs
and “ ripped ” it onto your player? In this case, your computer took the uncom-
pressed digital audio signal from the CD and performed digital signal process-
ing to compress it into an MP3 fi le (where MP3 is a digital audio encoding and
compression format). Similarly, when you decide to play a track on your MP3
player, the player performs digital signal processing to uncompress the MP3
data into a form suitable for listening.

 As another obvious example, do you own a digital camera? If so, whenever you
take a picture, the camera performs a variety of digital signal processing tasks, such
as automatically locating and focusing on any human faces in the frame. Later, in
addition to compressing the image to make it consume less memory (so you can
store more pictures), the camera may use digital signal processing algorithms to
adjust the image for brightness, contrast, color balance, and so forth.

 And the list goes on, and on, and on …

 WHAT IMPLEMENTS THE DIGITAL SIGNAL
PROCESSING?
 When you come to think about it, the complicated part is deciding on the
algorithms we wish to apply to our digital data. Once we’ve decided on these
algorithms, all we have to do is to implement them in some way.

Analog
input

A/D
converter

..01001..

Digital
values

Digital
processing

..11010..

New digital
values

D/A
converter

Analog
amplifier

Analog
output

FIGURE 13.7
 Simple digital signal processing scenario.

SECTION 1 Fundamentals168

 Whatever algorithms we decide to use, they ultimately break down into large num-
bers of relatively simple tasks, such as multiplying digital values, adding values
together, and similar operations. Purely for the sake of an example, let’s assume that
one small part of a digital-signal processing-algorithm looks like the following:

 y � (a � b) � (c � d) � (e � f) � (g � h) ;

 Note that all of these variables (y, a, b, c, …) represent multi-bit values; for
example, a through h might each be 16-bits wide while y might be 32-bits wide.

 Now, we could use a general-purpose microprocessor to perform this task. But
this would be relatively slow and painful. First, the processor would have to load
a into one of its internal registers; then it would have to load b into another reg-
ister; then it would have to multiply them together and store the result in yet
another register. Next, the processor would have to repeat these operations for
variables c and d, but this time it would also have to add this product to the
original product from the multiplication of a and b; and so it goes …

 An alternative is to use a special-purpose microprocessor called a Digital Signal
Processor (DSP). This may be presented as a discrete silicon chip (integrated cir-
cuit) or as a core 5 that is built into a larger chip. If you were to look inside a cell
phone, for example, you might fi nd a small general-purpose processor that is
used to monitor the keyboard and suchlike coupled with a DSP that is used to
process your voice, play music, and display images on the screen.

 The architecture of a digital signal processor is targeted toward performing a
certain set of digital signal processing tasks. It may, for example, contain one
or more Multiply-and-Accumulate (MAC) units that can be used to multiply two
values together and add the result to a “running total. ”

 Having said this, DSPs are still von Neumann machines 6 that have to fetch data
and process it in small “chunks. ” Thus, yet another approach is to use a Field
Programmable Gate Array (FPGA). As discussed in Chapter 16: Programmable ICs,
these devices may be visualized as containing hundreds of thousands of small
 “ islands” of programmable logic in a “sea” of programmable interconnect.

 5 The concept of cores is discussed in more detail in Chapter 17: Application-Specifi c Integrated
Circuits (ASICs) .
 6 The term von Neumann machine refers to a computer architecture in which data and pro-
gram memory are mapped into the same address space. Named after Hungarian-born
American mathematician John von Neumann (1903–1957), this is the de facto standard
architecture for the majority of today’s computers.

Analog-to-Digital and Vice Versa CHAPTER 13 169

The point is that an FPGA can be confi gured/programmed on-the-fl y to
implement whatever task we wish it to perform. In the case of our example
equation …

 y � (a � b) � (c � d) � (e � f) � (g � h);

 … we could confi gure the FPGA to contain four 16 � 16 multipliers coupled
with a four-input 32-bit adder. Since a high-end FPGA package may contain
hundreds or thousands of pins, we could bring all of the a through h inputs
in simultaneously; we could perform all four multiplications in a single clock
cycle, and we could add all four products on a second clock cycle.

 Thus, by performing multiple operations in parallel, an FPGA can perform
digital-signal processing tasks much faster than a special-purpose Digital Signal
Processor (DSP). Having said this, a DSP chip may be the preferred solution
depending on the target application.

This page intentionally left blank

 .

 SECTION 2 SECTION 2
 Components and
Processes

This page intentionally left blank

173

 THE FIRST INTEGRATED CIRCUITS
 In the early days of semiconductors, transistors and other electronic compo-
nents were available only in individual packages. These discrete components were
laid out on a circuit board and connected by hand using separate wires. At that
time, an electronic memory element capable of storing a single binary bit of
data cost more than $2. By comparison, in the early 1990s, enough logic gates
to store 5000 bits of data cost less than a penny . 1 This vast reduction in price
was primarily due to the invention of the Integrated Circuit (IC). 2

 A functional electronic circuit requires transistors, resistors, diodes, etc., and the
connections between them. A monolithic integrated circuit (the monolithic qualifi er
is usually omitted) has all of these components formed on the surface layer of
a sliver, or chip, of a single piece of semiconductor; hence, the term monolithic,
meaning “ seamless. ” Although a variety of semiconductor materials are avail-
able, the most commonly used is silicon, and integrated circuits are popularly
known as silicon chips. (Unless otherwise noted, the remainder of these discus-
sions will assume integrated circuits based on silicon as the semiconductor.)

 To a large extent, the demand for miniaturization was driven by the demands
of the American space program. For some time, people had been thinking that
it would be a good idea to be able to fabricate entire circuits on a single piece
of semiconductor. The fi rst public discussion of this idea is credited to a British
radar expert, Geoffrey William Arnold (G.W.A.) Dummer (1909–2002), in a
paper presented in 1952. However, it was not until the summer of 1958 that
Jack St. Clair Kilby (1923–2005), working for Texas Instruments, succeeded in

 CHAPTER 14 CHAPTER 14

 Integrated Circuits (ICs)

 1 I just did a search on the web as I pen these words. I found a 1-gigabyte memory stick for
$9.99, which equates to more than 8.5 million bits of memory per penny.
 2 In conversation, IC is pronounced by spelling it out as “ I-C ”.

SECTION 2 Components and Processes174

fabricating multiple components on a single piece of semiconductor. Kilby’s
fi rst prototype was a phase shift oscillator comprising fi ve components on a
piece of germanium, half an inch long and thinner than a toothpick. Although
manufacturing techniques subsequently took different paths from those used
by Kilby, he is still credited with the creation of the fi rst true integrated circuit.

 Around the same time that Kilby was working on his prototype, two of the found-
ers of Fairchild Semiconductors—the Swiss physicist Jean Hoerni (1924–1997)
and the American physicist Robert Noyce (1927–1990)—were working on more
effi cient processes for creating these devices. Between them, Hoerni and Noyce
invented the planar process, in which optical lithographic techniques are used to
create transistors, insulating layers, and interconnections on integrated circuits.

 By 1961, Fairchild and Texas Instruments had announced the availability of the
fi rst commercial planar integrated circuits comprising simple logic functions.
This announcement marked the beginning of the mass production of inte-
grated circuits. In 1963, Fairchild produced a device called the 907 containing
two logic gates, each of which consisted of four bipolar transistors and four
resistors. The 907 also made use of isolation layers and buried layers, both of
which were to become common features in modern integrated circuits.

 During the mid-1960s, Texas Instruments introduced a large selection of basic
“building block ” ICs called the 54xx (“fi fty-four-hundred ”) series and the 74xx
(“seventy-four-hundred ”) series, which were specifi ed for military and commercial
use, respectively. These jelly bean devices each contained small amounts of simple
logic. For example, a 7400 device contained four 2-input NAND gates, a 7402 con-
tained four 2-input NOR gates, and a 7404 contained six NOT (inverter) gates.

 TI’s 54xx and 74xx series were implemented in Transistor-Transistor Logic (TTL).
By comparison, in 1968, RCA introduced a somewhat equivalent CMOS-based
library of parts called the 4000 (“four thousand ”) series.

 In 1967, Fairchild introduced a device called the Micromosaic, which contained
a few hundred transistors. The key feature of the Micromosaic was that the tran-
sistors were not initially connected to each other. A designer used a computer
program to specify the function the device was required to perform, and the
program determined the necessary transistor interconnections and constructed
the photo-masks required to complete the device. The Micromosaic is credited
as the forerunner of the modern Application-Specifi c Integrated Circuit (ASIC), 3
and also as the fi rst real application of computer-aided design. In 1970,

 3 ASICs are discussed in more detail in Chapter 17: Application-Specifi c Integrated Circuits (ASICs) .

Integrated Circuits (ICs) CHAPTER 14 175

Fairchild introduced the fi rst 256-bit static RAM, called the 4100, while Intel
announced the fi rst 1024-bit dynamic RAM, called the 1103, in the same year. 4

 One year later, in 1971, Intel introduced the world’s fi rst microprocessor (μP), the
4004, which was conceived and created by Marcian “ Ted ” Hoff, Stan Mazor, and
Federico Faggin. Also referred to as a computer-on-a-chip, the 4004 contained only
around 2300 transistors and could execute 60,000 operations per second.

 AN OVERVIEW OF THE FABRICATION PROCESS
 The construction of integrated circuits requires one of most exacting production
processes ever developed. The environment must be at least a thousand times
cleaner than that of an operating theater, and impurities in materials have to be
so low as to be measured in parts per billion. 5 The process begins with the grow-
ing of a single crystal of pure silicon in the form of a cylinder with a diameter
that can be anywhere up to 300 mm. 6 The cylinder is cut into paper-thin slices
called wafers, which are approximately 0.2 mm thick (Figure 14.1).

 The thickness of the wafer is determined by the requirement for suffi cient
mechanical strength to allow it to be handled without damage. The actual
thickness necessary for the creation of the electronic components is less than
1 μm (one-millionth of a meter). After the wafers have been sliced from the cyl-
inder, they are polished to a smoothness rivaling the fi nest mirrors.

 The most commonly used fabrication process is optical lithography, in which
Ultraviolet Light (UV) is passed through a
stencil-like 7 object called a photo-mask, or
just mask for short. This square or rectan-
gular mask carries patterns formed by areas
that are either transparent or opaque to
ultraviolet frequencies (similar in concept
to a black-and-white photographic nega-
tive) and the resulting image is projected

 4 Memory devices are discussed in Chapter 15: Memory ICs.
 5 If you took a bag of fl our and added a grain of salt, this would be impure by comparison.
 6 When the fi rst edition of this tome hit the streets in 1995, the maximum wafer diameter
was 200 mm. By 2002, leading manufacturers were working with 300 mm diameter wafers,
which are relatively standard at the time of this writing. By 2012, it is expected that a shift
will have started to use 450 mm diameter wafers.
 7 Just in case you were wondering, the term stencil comes from the Middle English word
stanseld , meaning “adorned brightly. ”

Cylindrical silicon
crystal

Wafer

0.2 mm

25 mm to
300 mm

FIGURE 14.1
 Creating silicon wafers.

SECTION 2 Components and Processes176

onto the surface of the wafer. By means of some
technical wizardry that we’ll consider in the next
topic, we can use the patterns of ultraviolet light
to “grow ” corresponding structures in the sili-
con. The simple patterns shown in the follow-
ing diagrams were selected for reasons of clarity;
in practice, a mask can contain hundreds of mil-
lions (sometimes billions) of fi ne lines and geo-
metric shapes (Figure 14.2).

 Each wafer can contain hundreds or thou-
sands of identical integrated circuits. The
pattern projected onto the wafer’s surface cor-
responds to a single integrated circuit, which
is typically in the region of 1 mm � 1 mm
to 10 mm � 10 mm, but some chips are
15 mm � 15 mm, and some are even larger.
After the area corresponding to one integrated
circuit has been exposed, the wafer is moved
and the process is repeated until the same pat-

tern has been replicated across the whole of the wafer’s surface. This technique
for duplicating the pattern is called a step-and-repeat process .

 As we shall see, multiple layers are required to construct the transistors (and
other components), where each layer requires its own unique mask. Once all
of the transistors have been created, similar techniques are used to lay down
the tracking (wiring) layers that connect the transistors together.

 A SLIGHTLY MORE DETAILED LOOK
AT THE FABRICATION PROCESS
 To illustrate the manufacturing process in more detail, we
will consider the construction of a single NMOS transis-
tor occupying an area far smaller than a speck of dust. For
reasons of electronic stability, the majority of processes
begin by lightly doping the entire wafer to form either N-

type or, more commonly, P-type silicon. However, for the purposes of this dis-
cussion, we will assume a process based on a pure silicon wafer (Figure 14.3).

 Assume that the small area of silicon shown here is suffi cient to accommo-
date a single transistor in the middle of one of the integrated circuits residing

Ultraviolet
radiation
source

Mask

Wafer

Each square
corresponds to
an individual
integrated

circuit

FIGURE 14.2
 The opto-lithographic
step-and-repeat
process.

b b

cc

a

d

a

FIGURE 14.3
 Small area of silicon
somewhere on the
wafer.

Integrated Circuits (ICs) CHAPTER 14 177

somewhere on the wafer. During the fabrication process, the wafer is often
referred to as the substrate, meaning “base layer. ” A common fi rst stage is to
either grow or deposit a thin layer of silicon dioxide (glass) across the entire
surface of the wafer by exposing it to oxygen in a
high-temperature oven (Figure 14.4).

 After the wafer has cooled, it is coated with a thin
layer of organic resist, 8 which is fi rst dried and then
baked to form an impervious layer (Figure 14.5).

 A mask is created and ultraviolet light is applied.
The ionizing ultraviolet radiation passes through the
transparent areas of the mask into the resist, silicon
dioxide, and silicon. The ultraviolet breaks down the
molecular structure of the resist, but does not have
any effect on the silicon dioxide or the pure silicon
(Figure 14.6).

 As was previously noted, the small area of the mask
shown here is associated with a single transistor. The
full mask for a high-end integrated circuit can com-
prise hundreds of millions (sometimes billions) of
similar patterns. 9 After the area under the mask has

 8 The term organic is used because this type of resist is a carbon-based compound, and car-
bon is the key element for life as we know it.
 9 For the purpose of these discussions, I’m thinking of high-end digital integrated circuits
containing tens or hundreds of millions of logic gates. It is, of course, possible to have sim-
pler devices containing much fewer elements. In fact, only a couple of days ago as I pen
these words, I was chatting with an analog designer who had just designed a chip contain-
ing only nine painstakingly handcrafted transistors.

Silicon dioxide

Silicon (substrate)

FIGURE 14.4
 Grow or deposit a layer of silicon dioxide.

Silicon
(substrate)

Silicon dioxide

Organic resist

FIGURE 14.5
 Add a layer of organic
resist.

Ultraviolet
radiation source

Mask

Organic resist

Silicon
(substrate)

Silicon dioxide

FIGURE 14.6
 Use ultraviolet light to
degrade exposed resist.

SECTION 2 Components and Processes178

been exposed, the wafer is moved, and the process is repeated until the pat-
tern has been replicated across the entire surface of the wafer, once for each
integrated circuit. The wafer is then bathed in an organic solvent to dissolve the
degraded resist. Thus, the pattern on the mask has been transferred to a series
of corresponding patterns in the resist (Figure 14.7).

 A process by which ultraviolet light passing through the transparent areas of the
mask causes the resist to be degraded is known as a positive-resist process; negative-
resist processes are also available. In a negative-resist process, the ultraviolet radiation
passing through the transparent areas of the mask is used to cure (harden) the resist,
and the remaining uncured areas are then removed using an appropriate solvent.

 After the unwanted resist has been removed, the
wafer undergoes a process known as etching, in
which an appropriate solvent is used to dissolve any
exposed silicon dioxide without having any effect on
the organic resist or the pure silicon (Figure 14.8).

 The remaining resist is removed using an appropriate
solvent. Next, the wafer is placed in a high-tempera-
ture oven where it is exposed to a gas containing the
selected dopant (a P-type dopant in this case). The
atoms in the gas diffuse into the substrate, resulting
in a region of doped silicon (Figure 14.9). 10

 The remaining silicon dioxide layer is removed by means of an appropriate
solvent that doesn’t affect the silicon substrate (including the doped regions).

 10 In some processes, diffusion is augmented with ion implantation techniques, in which beams
of ions (which were introduced in Chapter 2: Atoms, Molecules, and Crystals) are fi red at the
wafer to alter the type and conductivity of the silicon in selected regions.

Organic resist

Silicon
(substrate)

Silicon dioxide

FIGURE 14.7
 Dissolve the degraded resist with an organic solvent.

Silicon
(substrate)

Organic resist

Silicon dioxide

FIGURE 14.8
Etch the exposed silicon dioxide.

P-type silicon

Silicon dioxide

Silicon
(substrate)

Gas containing
P-type dopant

FIGURE 14.9
 Dope the exposed silicon.

Integrated Circuits (ICs) CHAPTER 14 179

Poly-crystalline silicon
(gate electrode)

N-type
silicon

Silicon dioxide

N-type silicon
P-type silicon

Silicon
(substrate)

FIGURE 14.10
 Add N-type diffusion regions and the gate electrode.

Additional masks and variations on the process are used to create two N-type dif-
fusion regions, a gate electrode, and a layer of insulating silicon dioxide between
the substrate and the gate electrode (Figure 14.10).

 In the original MOS technologies, the gate electrode was metallic: hence, the
 “ metal-oxide semiconductor ” appellation. In modern processes, however, the
gate electrode is formed from poly-crystalline silicon (often abbreviated to poly-
silicon or even just poly), which is also a good conductor.

 The N-type diffusions form the transistor’s source and drain regions (you might
wish to refer back to Chapter 4: Semiconductors (Diodes and Transistors) to refresh
your memory at this point). The gap between the source and drain is called the
channel. To provide a sense of scale, the length of the channel in one of today’s
state-of-the-art technologies is measured in a few tens of billionths of a meter
(see also the discussions on device geometries later in this chapter).

 Another layer of insulating silicon dioxide is now grown or deposited across
the surface of the wafer. Using lithographic techniques similar to those
described above, holes are etched through the silicon dioxide in areas in which
it is desired to make connections, and a metallization layer of interconnections
called tracks (you can think of them as wires) is deposited (Figure 14.11). 11 , 12

 11 In the early days, the tracks were formed out of aluminum, because this didn’t react with
(diffuse into) the insulating silicon dioxide. As the structures on chips got smaller and the
tracks got thinner and narrower, their resistance increased; eventually, aluminum could no
longer do the job. Thus, modern chips use copper interconnect; this requires more steps to
isolate the copper from the silicon dioxide, but it’s worth it because copper is a much better
conductor than aluminum.
 12 Silver is the best electrical and thermal conductor of any metal (followed by copper and
then by gold), but it’s even harder to work with than copper when it comes to building
silicon chips.

Metal track
(gate)

Metal track
(drain)

Silicon (substrate) Metal track
(source)

Insulating layer
of silicon dioxide

FIGURE 14.11
 Add a layer of metal tracks.

SECTION 2 Components and Processes180

 The end result is an NMOS transistor; a logic 1 on the track connected to the
gate terminal will turn the transistor ON , thereby enabling current to fl ow
between its source and drain terminals. An equivalent PMOS transistor could
have been formed by exchanging the P-type and N-type diffusion regions. By
varying the structures created by the masks, components such as resistors and
diodes can be fabricated at the same time as the transistors. The tracks are used
to connect groups of transistors to form primitive logic gates and to connect
groups of these gates to form more complex functions.

 An integrated circuit contains three distinct levels of conducting material: the
diffusion layer at the bottom, the polysilicon layers in the middle, and the metalli-
zation layers at the top. In addition to forming components, the diffusion layer
may also be used to create embedded wires. Similarly, in addition to forming
gate electrodes, the polysilicon may also be used to interconnect components.
There may be several layers of polysilicon and multiple layers of metallization,
with each pair of adjacent layers separated by an insulating layer of silicon
dioxide. The layers of silicon dioxide are selectively etched with holes that are
fi lled with conducting metal and are known as vias; these allow connections to
be made between the various tracking layers.

 Early integrated circuits typically supported only two layers of metallization.
The tracks on the fi rst layer predominantly ran in a “North-South” direction,
while the tracks on the second predominantly ran “East-West. ” 13 As the number
of transistors increased, engineers required more and more tracking layers. The
problem is that when a layer of insulating silicon dioxide is deposited over a
tracking layer, you end up with slight “bumps” where the tracks are (like snow
falling over a snoozing polar bear—you end up with a bump).

 After a few tracking layers, the bumps are pronounced enough that you can’t con-
tinue. The answer is to re-planarize the wafer (smooth the bumps out) after each
tracking and silicon dioxide layer combo has been created. This is achieved by
means of a process called Chemical Mechanical Polishing (CMP), which returns the
wafer to a smooth, fl at surface before the next tracking layer is added. Using this
process, high-end silicon chips can support up to ten tracking layers.

 13 In 2001, a group of companies announced a new chip interconnect concept called X
Architecture in which logic functions on chips are wired together using diagonal tracks (as
opposed to traditional North-South and East-West tracking layers). It is claimed that this
diagonal interconnect strategy can increase chip performance by 10% and reduce power
consumption by 20%. I know of a couple of chips that have been fabricated using this tech-
nology, but it has not yet gained widespread adoption.

Integrated Circuits (ICs) CHAPTER 14 181

 AN INTRODUCTION TO THE PACKAGING PROCESS
 There are a wide variety of different packaging techniques. We’ll start by consid-
ering one of the simplest packaging styles (one that’s easy to understand) and
then we’ll consider some slightly more complex techniques. (We’ll also look
at some really sophisticated packaging technologies in Chapter 20: Advanced
Packaging Techniques .)

 In the case of our simple packaging technique, relatively large areas of alumi-
num or copper called pads are constructed at the edges of each integrated cir-
cuit for testing and connection purposes. Some of the pads are used to supply
power to the device, while the rest are used to provide input and output signals
to the components in the chip (Figure 14.12).

Pads

FIGURE 14.12
 Power and signal pads.

 In a step known as overglassing, the entire surface of the wafer is coated with a fi nal
barrier layer (or passivation layer) of silicon dioxide or silicon nitride, which pro-
vides physical protection for the underlying circuits from moisture and other con-
taminants. One more lithographic step is required to pattern holes in the barrier
layer to allow connections to be made to the pads. In some cases, additional met-
allization may be deposited on the pads to raise them fractionally above the level
of the barrier layer. Augmenting the pads in this way is known as silicon bumping.

 The entire fabrication process requires numerous lithographic steps, each
involving an individual mask and layer of resist to selectively expose different
parts of the wafer.

 The individual integrated circuits are tested while they are still part of the wafer
in a process known as wafer probing. An automated tester places probes on
the device’s pads, applies power to the power pads, injects a series of signals
into the input pads, and monitors the corresponding signals returned from

SECTION 2 Components and Processes182

the output pads. Each integrated circuit is tested in
turn, and any device that fails the tests is automati-
cally tagged with a splash of dye for subsequent
rejection. The yield is the number of devices that
pass the tests as a percentage of the total number
fabricated on that wafer.

 The completed circuits, known as die , 14 are sepa-
rated by marking the wafer with a diamond scribe
and fracturing it along the scribed lines (much like
cutting a sheet of glass or breaking up a Kit Kat®
bar) (Figure 14.13).

 Following separation, the majority of the die are
packaged individually. Since there are almost as

many packaging technologies as there are device manufacturers, we will initially
restrain ourselves to a low-end “cheap-and-cheerful” process. First, the die is
attached to a metallic lead frame using an adhesive (Figure 14.14).

 14 The plural of die is also die (in much the same way that herring is the plural of herring as in
“a shoal of herring ”).

FIGURE 14.13
 Die separation.

Lead frame
with die attached

Bare lead frame

FIGURE 14.14
 The die is attached to a
lead frame.

 15 Human hairs range in thickness from around 0.07 mm to 0.1 mm. A hair from a typical
blond lady’s head is approximately 0.075 mm (three-quarters of one-tenth of a millimeter)
in diameter. By comparison, integrated circuit bonding wires are typically one-third this
diameter, and they can be even thinner.

 One of the criteria used when selecting the adhesive is its ability to conduct heat
away from the die when the device is operating. An automatic wire-bonding tool
connects the pads on the die to the leads on the lead frame with wire bonds fi ner
than a human hair. 15 The whole assembly is then encapsulated in a block of plastic
or epoxy (Figure 14.15).

Integrated Circuits (ICs) CHAPTER 14 183

 A dimple or notch is formed at one end of the package so that the users will
know which end is which. The unused parts of the lead frame are cut away and
the device’s leads, or pins, are shaped as required; these operations are usually
performed at the same time (Figure 14.16).

Wire bonds
attached

Encapsulation

FIGURE 14.15
 Wire bonding and
encapsulation.

Discard unused
lead frame

Shape pins
Notch

FIGURE 14.16
 Discard unused lead frame and shape pins.

 16 Invented at Fairchild in 1965, DIL packages were the mainstay of the industry through the
1970s and 1980s. Their use started to decline in the 1990s as Surface Mount Technology (SMT)
gained in popularity, but you can still fi nd new components from some manufacturers in
these packages to this day; for example, Microchip Technology (http://www.microchip.
com) continue to provide many of their latest-and-greatest PIC® microcontrollers in both
DIL and SMT packages.

 An individually packaged integrated circuit consists of the die and its con-
nections to the external leads, all encapsulated in the protective package. The
package protects the silicon from moisture and other impurities and helps to
conduct heat away from the die when the device is operating.

 As was previously noted, there is tremendous variety in the size and shape
of packages. A rectangular device with pins on two sides, as illustrated here,
is called a Dual In-Line (DIL) package or a DIP . 16 A standard 14-pin packaged
device is approximately 18 mm long by 6.5 mm wide by 2.5 mm deep, and has
2.5-mm spaces between pins. An equivalent Small Outline Package (SOP) could
be as small as 4 mm long by 2 mm wide by 0.75 mm deep, and have 0.5-mm

SECTION 2 Components and Processes184

spaces between pins. Other packages can be square and have pins on all four
sides, and some have an array of pins protruding from the base.

 The shapes into which the pins are bent depend on the way the device is
intended to be mounted on a circuit board. The package described above has
pins that are intended to go all the way through the circuit board using a mount-
ing technique called Lead Through Hole (LTH). By comparison, the packages asso-
ciated with a technique called Surface Mount Technology (SMT) have pins that are
bent out fl at, and which attach to only one side (surface) of the circuit board [an
example of this is shown in Chapter 18: Printed Circuit Boards (PCBs)].

 It’s important to remember that the example discussed above refl ects a
very simple packaging strategy for a device with very few pins. By 2002, some
integrated circuits (and their packages) had as many as 1000 pins; by 2008,
some high-end components were available with 2000 pins or more. This mul-
tiplicity of pins requires a very different packaging approach. For example, the
pads on the die are no longer restricted to its periphery, but are instead located
over the entire face of the die. A minute ball of solder is then attached to each
pad, and the die is fl ipped over and attached to the package substrate (this is
referred to as a fl ip-chip technique). Each pad on the die has a corresponding
pad on the package substrate, and the package-die combo is heated so as to
melt the solder balls and form good electrical connections between the die and
the substrate (Figure 14.17).

 Eventually, the die will be encapsulated in some manner to protect it from
the outside world. The package’s substrate itself may be made out of the same

material as a printed circuit board, or out of
ceramic, or out of some even more esoteric
material. Whatever its composition, the sub-
strate will contain multiple internal wiring lay-
ers that connect the pads on the upper surface to
pads (or pins) on the lower surface. The pads (or
pins) on the lower surface (the side that actu-
ally connects to the circuit board) will be spaced
much further apart—relatively speaking—than
the pads that connect to the die. At some stage
the package will have to be attached to a circuit
board. In one technique known as a Ball Grid
Array (BGA), the package has an array of pads
on its bottom surface, and a small ball of solder

Die with array
of pads and a
small ball of
solder on
each pad

Die is flipped over,
attached to the
substrate, then
encapsulated

Package
substrate with
an array of pads

Array of pads on
the bottom of the
substrate (each
pad has a ball of
solder attached)

FIGURE 14.17
 A fl ip-chip ball grid array packaging technique.

Integrated Circuits (ICs) CHAPTER 14 185

is attached to each of these pads. Each pad on the package will have a corre-
sponding pad on the circuit board, and heat is used to melt the solder balls
and form good electrical connections between the package and the board.

 Modern packaging technologies are extremely sophisticated. Some ball grid arrays
have pins spaced 0.3 mm (one-third of a millimeter) apart! In the case of Chip-
Scale Package (CSP) technology, the package is barely larger than the die itself. In
the early 1990s, some specialist applications began to employ a technique known
as die stacking, in which several bare die are stacked on top of each other to form a
sandwich. The die are connected together and then packaged as a single entity.

 As was previously noted, there are a wide variety of integrated packaging
styles. There are also many different ways in which the die can be connected
to the package. We will introduce a few more of these techniques in future
chapters. 17

 INTEGRATED CIRCUITS VERSUS DISCRETE
COMPONENTS
 The tracks that link components inside an integrated circuit have widths mea-
sured in fractions of a millionth of a meter, and lengths measured in mil-
limeters. By comparison, the tracks that link components on a circuit board
are orders of magnitude wider, and have lengths measured in tens of centime-
ters. Thus, the transistors used to drive tracks inside an integrated circuit can
be much smaller than those used to drive their circuit board equivalents, and
smaller transistors use less power. Additionally, signals take a fi nite time to
propagate down a track, so the shorter the track, the faster the signal.

 A single integrated circuit can contain hundreds of millions of transistors
(see also the topic titled How Many Transistors? later in this chapter). A similar
design based on discrete components would be tremendously more expensive
in terms of price, size, operating speed, power requirements, and the time and
effort required to design and manufacture the system. Additionally, every solder
joint on a circuit board is a potential source of failure, which affects the reli-
ability of the design. Integrated circuits reduce the number of solder joints and,
hence, improve the reliability of the system.

 17 Additional packaging styles and alternative mounting strategies are presented in Chapter
18: Printed Circuit Boards (PCBs), Chapter 19: Hybrids, and Chapter 20: Advanced Packaging
Techniques .

SECTION 2 Components and Processes186

 In the past, an electronic system was typically composed of a number of inte-
grated circuits, each with its own particular function (say a microprocessor,
some peripheral functions, some memory devices, etc.). For many of today’s
high-end applications, however, electronics engineers are combining all of
these functions on a single device, which may be referred to as a System-on-
Chip (SoC).

 DIFFERENT TYPES OF ICS
 The fi rst integrated circuit—a simple phase-shift oscillator—was constructed in
1958. Since that time, a plethora of different device types have appeared on the
scene. There are far too many different integrated circuit types for us to cover
in this book, but some of the main categories—along with their approximate
dates of introduction—are shown in Figure 14.18 . 18

 Memory devices (in particular SRAMs and DRAMs) are introduced in Chapter
15: Memory ICs; programmable integrated circuits (PLDs, CPLDs, FPGAs, and
CSSPs) are presented in Chapter 16: Programmable ICs; and Application-Specifi c
Integrated Circuits (ASICs) are discussed in Chapter 17: Application-Specifi c
Integrated Circuits (ASICs) .

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

FPGAs

ASICs

CPLDs

SPLDs

Microprocessors

SRAMs & DRAMs

ICs (General)

Transistors

FIGURE 14.18
 Timeline of device introductions (dates are approximate).

 18 The white portions of the timeline bars in Figure 14.18 indicate that although early incar-
nations of these technologies may have been available, they perhaps hadn’t been enthusi-
astically received during this period. For example, Xilinx introduced the world’s fi rst FPGA
as early as 1984, but many design engineers didn’t really become interested in these little
rapscallions until the late 1980s.

Integrated Circuits (ICs) CHAPTER 14 187

 TTL, ECL, AND CMOS
 Transistors are available in a variety of fl avors called families or technologies. One
of the fi rst to be invented was the Bipolar Junction Transistor (BJT), which was
the mainstay of the industry for many years. If bipolar transistors are connected
together in a certain way, the resulting logic gates are classed as Transistor-
Transistor Logic (TTL). An alternative method of connecting the same transistors
results in logic gates classed as Emitter-Coupled Logic (ECL).

 Another family called Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs)
were invented some time after bipolar junction transistors. Complementary Metal-
Oxide Semiconductor (CMOS) logic gates are based on NMOS and PMOS MOSFETs
connected together in a complementary manner.

 Some integrated circuits use a combination of technologies; in the case of
Bipolar CMOS (BiCMOS), for example, the function of every primitive logic
gate is implemented in low-power CMOS, but the output stage of each gate
uses high-drive bipolar transistors.

 Finally, gates fabricated using the gallium arsenide (GaAs) semiconductor as a
substrate are faster than their silicon equivalents, but they are expensive to pro-
duce, and so are used for specialized applications only.

 CORE SUPPLY VOLTAGES
 Toward the end of the 1980s and the beginning of the 1990s, the majority of
digital integrated circuits were based on a 5.0-volt supply. However, increasing
usage of portable personal electronics, such as notebook computers and cel-
lular telephones, began to drive the requirement for devices that consume and
dissipate less power.

 One way to reduce power consumption is to lower the supply voltage; thus, by
the mid to late 1990s, the most common supplies were 3.3 volts for portable
computers and 3.0 volts for communication systems.

 The core supply voltage continued to fall over the years [by core we mean the
supply voltage used to drive the internals of the silicon chip; the input/output
(I/O) pins may use higher voltages]. Leading-edge devices were using 2.5 volts
by 1999, 1.8 volts by 2000, 1.5 volts by 2001, and 1.2 volts by 2003. At the
time of this writing in 2008, some cutting-edge devices have core supply volt-
ages as low as 0.9 volts.

SECTION 2 Components and Processes188

 EQUIVALENT GATES
 One common metric used to categorize a digital integrated circuit is the num-
ber of logic gates it contains. However, diffi culties may arise when comparing
devices, as each type of logic function requires a different number of transis-
tors. This leads to the concept of an equivalent gate, whereby each type of logic
function is assigned an equivalent gate value, and the relative complexity of an
integrated circuit is judged by summing its equivalent gates.

 Unfortunately, the defi nition of an equivalent gate can vary, depending on
whom one is talking to. A reasonably common convention is for a 2-input
NAND to represent one equivalent gate. A more esoteric convention defi nes an
ECL equivalent gate as being “ one-eleventh the minimum logic required to imple-
ment a single-bit full-adder, ” while some vendors defi ne an equivalent gate as
being equal to an arbitrary number of transistors based on their own particular
technology. The best policy is to establish a common frame of reference before
releasing a fi rm grip on your hard-earned lucre.

 The acronyms SSI, MSI, LSI, VLSI, and ULSI represent Small-, Medium-, Large-,
Very-Large-, and Ultra-Large-Scale Integration, respectively. By one convention,
the number of gates represented by these terms are: SSI (1–12), MSI (13–99),
LSI (100–999), VLSI (1000–999,999), and ULSI (1,000,000 or more). 19

 DEVICE GEOMETRIES
 Integrated circuits are also categorized by their geometries, meaning the size of
the structures created on the substrate. For example, a 1- μ m 20 CMOS device
would have structures that measure one-millionth of a meter. The structures
typically embraced by this description are the width of the tracks and the length
of the channel between the source and drain diffusion regions; the dimensions
of other features are derived as ratios of these structures. 21

 19 Truth to tell, not many folks use these terms anymore. They’ve become increasingly irrele-
vant as designers have moved away from using simple jelly bean components and chips have
increased in complexity into the hundreds of millions (or billions) of transistors.
 20 The “μ ” symbol stands for micro from the Greek micros, meaning “small,” (hence, the use
of μP and μC as abbreviations for microprocessor and microcontroller, respectively). In
the metric system, μ stands for “one millionth part of, ” so 1 μm means “one-millionth of
a meter. ”
 21 I’m simplifying things here; there are different ways of measuring things depending on the
type of component; for example, memory chips versus devices containing general-purpose
logic gates.

Integrated Circuits (ICs) CHAPTER 14 189

 Each new geometry may be referred to as a technology node or a process node .
Geometries are continuously shrinking as fabrication processes improve. In
1990, devices with 1- μm geometries were considered to be state of the art, and
many observers feared that the industry was approaching the limits of man-
ufacturing technology, but geometries continued to shrink regardless as illus-
trated in Table 14.1 .

 Around the time we reached the 0.5 μm technology node, it became common
to refer to anything below this point as Deep-Submicron (DSM). Later, at some
point that wasn’t particularly well defi ned (or was defi ned differently by different
people) we moved into the realm of Ultra-Deep-Submicron (UDSM). However, no
one tends to use these terms anymore, because we’ve now travelled so deep into
the rabbit hole that we’ve run out of meaningful qualifying words.

 Evolution of Technology Nodes

 Year Node

 1990 l.00 μ m

 1992 0.80 μ m

 1994 0.50 μ m

 1996 0.35 μ m

 1997–1998 0.25 μ m

 1999–2000 180 nm

 2001 130 nm

 2001 100 nm

 2003 90 nm

 2005–2006 65 nm

 2008 45 nm

 2008 40 nm

 2009–2010* 32 nm

 2011–2012* 22 nm

 2013–2014* 16 nm

 * “ Finger-in-the-air ” predicted dates

Table 14.1

SECTION 2 Components and Processes190

 With devices whose geometries were 1 μm and higher, it was relatively easy
to talk about them in conversation. For example, one might say “ I’m working
with a one-micron technology. ” But things started to get a little awkward when
we dropped below 1 μm, because it’s a bit of a pain to have to keep on saying
things like “ zero-point-one-three microns. ” For this reason, sometime around the
end of the 20th century, it became common to talk in terms of “nano , ” where
one nano (short for nanometer) equates to one one-thousandth of a micron; that
is, one-thousandth of one-millionth of a meter. Thus, when referring to a 130-
nm (0.13 μm) technology, instead of mumbling “ zero-point-one-three microns, ”
you could now proudly proclaim “ one-hundred and thirty nano. ” Of course, both
of these mean exactly the same thing, but if you want to talk about this sort of
stuff, it’s best to use the vernacular of the day and present yourself as hip and
trendy as opposed to an old fuddy-duddy from the last millennium.

 While smaller geometries result in lower power consumption and higher
operating speeds, these benefi ts do not come without a price. Logic gates
implemented in nanometer technologies exhibit extremely complex timing
effects, which make corresponding demands on designers and design tools.
Additionally, all materials are naturally radioactive to some extent, and the
materials used to package integrated circuits can spontaneously release alpha
particles. Devices with smaller geometries are more susceptible to the effects of
noise, and the alpha decay in packages can cause corruption of the data being
processed by deep-submicron logic gates. Nanometer technologies also suffer
from a phenomenon known as subatomic erosion or, more correctly, electromigra-
tion, in which the structures in the silicon are eroded by the fl ow of electrons in
much the same way as land is eroded by a river.

 WHAT COMES AFTER OPTICAL LITHOGRAPHY?
 Although new techniques are constantly evolving, technologists can foresee the
limits of miniaturization that can be practically achieved using optical lithog-
raphy. These limits are ultimately dictated by the wavelength of ultraviolet
radiation.

 In fact, the features (structures) on a silicon chip are now smaller than the wave-
length of the light used to create them (Figure 14.19). If we assume that the green
geometric shape shown in this illustration is the ideal (desired) form, then this
is the shape that would be generated by the design tools. The problem is that, if
this shape were to be replicated as-is in the photo-mask, then the corresponding
form appearing on the silicon would drift farther and farther from the ideal with
the decreasing feature sizes associated with the newer technology nodes.

Integrated Circuits (ICs) CHAPTER 14 191

 The way this is currently addressed in conventional design fl ows is for the
manufacturing group to post-process the design fi les with a variety of Resolution
Enhancement Techniques (RET), such as Optical Proximity Correction (OPC) and
Phase Shift Mask (PSM). For example, they may modify the original design
fi les by augmenting existing features or adding new features—known as Sub-
Resolution Assist Features (SRAF)—so as to obtain better printability. One way
to visualize this is that if the manufacturing group (actually, their tools) knows
that the features will be distorted by the printing (imaging) process in certain
ways, they can add their own distortions in the “opposite direction ” in an
attempt to make the two distortions cancel each other out.

 The technology has now passed from using Standard Ultraviolet (UV) to Extreme
Ultraviolet (EUV), which is just this side of soft X-rays in the electromagnetic
spectrum. One potential alternative is true X-ray lithography, but this requires
an intense X-ray source and is considerably more expensive than optical lithog-
raphy. Another possibility is electron beam lithography (often abbreviated to
e-beam lithography), in which fi ne electron beams are used to draw extremely
high-resolution patterns directly into the resist without a mask. Electron beam
lithography is sometimes used for custom and prototype devices, but it is
much slower and more expensive than optical lithography. Thus, for the pres-
ent, it would appear that optical lithography will continue to be the mainstay
of mass-produced integrated circuits.

1992 1994 1996 1998 2000 2002 2004 2006

500 nm

350 nm

250 nm
180 nm

130 nm
90 nm 65 nm

365 nm

Wavelength

248 nm
193 nm
157 nm

Green � Ideal Red � Actual
Decreasing feature sizes

FIGURE 14.19
 Technology nodes versus the ultraviolet wavelengths used to create them.

SECTION 2 Components and Processes192

 HOW MANY TRANSISTORS?
 The fi rst integrated circuits typically contained around six transistors. By the
latter half of the 1960s, devices containing around 100 transistors were reason-
ably typical.

 In the fi rst half of 2002, Intel announced its McKinley microprocessor—an inte-
grated circuit based on a 130-nano (0.13- μm) process, containing more than 200
million transistors. And by the summer of 2002, Intel had announced a test chip
based on a 90-nano (0.09- μm) process that contained 330 million transistors.

 On May 19, 2008 (a few days ago at the time of this writing) a company called
Altera (http://www.altera.com/) announced a new family of FPGAs (see Chapter
16: Programmable ICs), the largest member of which contains 2.5 billion transis-
tors! At this level of processing power, we will soon have the capabilities required
to create Star Trek–style products, like a universal real-time language translator.

 MOORE’S LAW
 You can’t read a technical paper these days without blundering into some mention
of Moore’s Law, so it behooves us to explain this here. In 1965, Gordon Moore
(1929–) (who was to cofound Intel Corporation in 1968) was preparing a speech
that included a graph illustrating the growth in the performance of memory ICs.
While plotting this graph, Moore realized that new generations of memory devices
were released approximately every 18 months, and that each new generation of
devices contained roughly twice the capacity of its predecessor.

 This observation subsequently became known as Moore’s Law, and it has been
applied to a wide variety of electronics trends. These include the number of
transistors that can be constructed in a certain area of silicon (the number dou-
bles approximately every 18 months), the price per transistor (which follows
an inverse Moore’s Law curve and halves approximately every 18 months), and
the performance of microprocessors (which again doubles approximately every
18 months).

193

 RAMS AND ROMS
 Memory devices are a special class of integrated circuits that are used to store
binary data for later use. There are two main categories of semiconductor
memories: Read-Only Memory (ROM) and Read-Write Memory (RWM). 1 Other
components in the system can read (extract) data from ROM devices, but can-
not write (insert) new data into them. By comparison, data can be read out of
RWM devices and, if required, new data can be written back into them. The
act of reading data out of a RWM does not affect the master copy of the data
stored in the device. 2 For a number of reasons, mainly historical, RWMs are
more commonly known as Random-Access Memories (RAMs).

 ROM and RAM devices fi nd a large number of diverse applications in electronic
designs, but their predominant usage is as memory in computer systems, so
that’s what we’ll focus on here (Figure 15.1). 3

 The brain of the computer is the Central Processing Unit (CPU), which is where
all of the number crunching and decision making are performed. The CPU uses
a set of signals called the address bus to point to the memory location in which
it is interested. The address bus is said to be unidirectional because it conveys
information in only one direction: from the CPU to the memory. By means of
control signals, the CPU either reads data from, or writes data to, the selected

 CHAPTER 15 CHAPTER 15

 Memory ICs

 1 There’s also an engineering joke called a Write-Only Memory (WOM). The idea behind this
mythical beast is that you can write data into it, but you can’t read that data back out again.
 2 This is true of modern semiconductor memories. In the case of the original magnetic core
store memories, the act of reading a word of data out of the core set that word to all logic 0s
or all logic 1s (this was called a destructive read), so extra circuitry had to be employed to
automatically rewrite the data back in.
 3 In conversation, ROM is pronounced as a single word to rhyme with “ bomb, ” while RAM
is pronounced to rhyme with “ ham. ”

SECTION 2 Components and Processes194

memory location. The data is transferred on a set of signals called the data bus,
which is said to be bidirectional because it can convey information in two direc-
tions: from the CPU to the memory and vice versa.

 The bulk storage is often based on magnetic media such as a hard disk drive,
which can be used to store a large quantity of information relatively cheaply.
Because magnetic media maintains its data when power is removed from the
system it is said to be nonvolatile.

 One of the major disadvantages of currently available bulk storage units is their
relatively slow speed. 4 The CPU can process data at a much higher rate than the
bulk storage can supply or store it. Semiconductor memories are signifi cantly
more expensive than bulk storage, but they are also a great deal faster.

 ROMs are also classed as being nonvolatile, because their data remains when
power is removed from the system. By comparison, RAM devices initialize con-
taining random logic 0 or logic 1 values when power is fi rst applied to a sys-
tem. Thus, any meaningful data stored inside a RAM must be written into it
by other components in the system after it has been powered-up. Additionally,
RAMs are said to be volatile, because any data they contain is lost when power
is removed from the system.

 When a computer system is fi rst powered-up, it doesn’t know much about any-
thing. The CPU is hard-wired so that the fi rst thing it does is read an instruction

CPU

control_bus

data_bus

address_bus

ROM

RAM

Bu
lk

St
or

-
ag

e

FIGURE 15.1
 ROM and RAM in a
computer system.

 4 Note the use of the “relatively ” qualifi er; modern bulk storage is actually amazingly fast,
but not as fast as the rest of the system.

Memory ICs CHAPTER 15 195

from a specifi c memory address: for example, address zero. The components
forming the system are connected together in such a way that this hard-wired
address points to the fi rst location in a block of ROM. 5 The ROM contains a
sequence of instructions that are used by the CPU to initialize both itself and
other parts of the system. This initialization is known as boot-strapping, which is
derived from the phrase “ pulling yourself up by your boot-straps. ” At an appropri-
ate point in the initialization sequence, instructions in the ROM cause the CPU
to copy a set of master programs, known collectively as the Operating System
(OS), from the bulk storage into the RAM. Finally, the instructions in the ROM
direct the CPU to transfer its attention to the operating system instructions in
the RAM, at which point the computer is ready for the user to enter the game.

 CELLS, WORDS, AND ARRAYS
 The smallest unit of memory, called a cell, can be used to store a single bit
of data: that is, a logic 0 or a logic 1. A number of cells physically grouped
together are classed as a word, and all the cells in a word are typically written
to, or read from, at the same time. The core of a memory device is made up of
a number of words arranged as an array (Figure 15.2).

 The “ width ” (w) of a memory is the number of bits used to form a word , 6 where
the bits are usually numbered from 0 to (w –1). Similarly, the “ depth ” (d) of a

Word 7

Word 04-bit
word

bit 0

bit 3

1-bit cell

8-word
array

Depth (d)

Width (w
)

FIGURE 15.2
 Memory cells, words, and arrays.

 5 If the truth be told, early computers used ROM, but these days they tend to employ
another form of memory called FLASH, which is nonvolatile like ROM, but which can be
reprogrammed (if necessary) like RAM (FLASH memory is introduced later in this chapter).
 6 Note that there is no offi cial defi nition as to the width of a word: this is always
system-dependent.

SECTION 2 Components and Processes196

memory is the number of words used to form the array, where the words are
usually numbered from 0 to (d –1). The following examples assume a memory
array that is four bits wide and eight words deep; of course, real devices can be
much wider and deeper and can contain humungous amounts of data.

 ADDRESSING A WORD IN MEMORY
 For external components (such as a CPU) to reference a particular word in the
memory, they must specify that word’s address by placing appropriate values
onto the address bus. The address is decoded inside the device, and the contents
of the selected word are made available as outputs from the array (Figure 15.3).

External
system

Memory
device

address_bus[2:0]

data[3.0] (from
the word selected
by the address bus)

Address
decoder

000

001

010

011

100

0
1

2
3

4
5

6
7101

110

111

FIGURE 15.3
 Address bus decoding.

 7 Decoders were introduced in Chapter 11: Slightly More Complex Functions .
 8 The original metric system of measurement was developed during the French Revolution
and its use was legalized in the United States in 1866. The International System of Units
(SI) is a modernized version of the metric system.
 9 The term kilo comes from the Greek khiloi, meaning “thousand” (strangely enough, this is
the only prefi x with an actual numerical meaning).

 Standard memory devices are constrained to have a depth of 2 n words, where
n is the number of bits used to form the address bus. For example, the 3-bit
address bus illustrated in Figure 15.3 can be decoded to select one of eight
words (2 3 � 8) using a 3:8 decoder. 7

 KILO, MEGA, GIGA, TERA, ETC.
 The fact that standard memory devices are constrained to have a depth of
2n words leads to an interesting quirk when referring to the size of a memory
device. In SI units, 8 the qualifi er “K” (kilo) 9 represents one thousand (1000),

Memory ICs CHAPTER 15 197

but the closest power of two to one thousand is 2 10, which equals 1024.
Therefore, a 1-kilobit (1-kb or 1-Kb) 10 memory actually refers to a device con-
taining 1,024 bits.

 Similarly, the qualifi er “ M ” (mega) 11 is generally taken to represent one million
(1,000,000), but the closest power of two to one million is 2 20, which equals
1,048,576. Therefore, a 1-megabit (1-Mb) memory actually refers to a device
containing 1,048,576 bits. In the case of the qualifi er “ G ” (giga), 12 which is
now generally taken to represent one billion (1,000,000,000), 13 the closest
power of two is 2 30, which equals 1,073,741,824. Therefore, a 1-gigabit (1-Gb)
memory actually refers to a device containing 1,073,741,824 bits.

 And we can keep on going:

 1 terabit (1 tb) � 2 40 � 1,099,511,627,776 bits
 1 petabit (1 Pb) � 2 50 � 1,125,899,906,842,624 bits
 1 exabit (2 Eb) � 2 60 � 1,152,921,504,606,846,976 bits
 1 zettabit (1 Zb) � 2 70 � 1,180,591,620,717,411,303,424 bits
 1 yottabit (1 Yb) � 2 80 � 1,208,925,819,614,629,174,706,176 bits

 and so forth.

 BITS AND BYTES
 If the width of the memory is equal to a byte or a multiple of bytes, then the
size of the memory may also be referred to in terms of bytes. For example, a
memory containing 1024 words, each 8 bits wide, may be referred to as being
either an 8-kilobit (8-Kb) or a 1-kilobyte (1-KB) device (note the use of “ b ”
and “ B ” to represent bit and byte, respectively).

 ROM CONTROL DECODING
 Because multiple memory devices are usually connected to a single data bus,
the data coming out of the internal array is typically buffered from the external

 10 The offi cial SI symbol for kilo is a lowercase “ k ” (for example, 10 kg represents ten kilo-
grams). When referring to computer memories, however, it is usual to use an uppercase “ K ”
(for example 1 Kb); this is because the other symbols used for memory, like mega (M) and
giga (G), are uppercase.
 11 The term mega comes from the Greek megas, meaning “ great ” (hence, the fact that
Alexander the Great was known as Megas Alexandros in those days).
 12 The term giga comes from the Latin gigas, meaning “ giant. ”
 13 See the discussions in Chapter 3: Conductors, Insulators, and Other Stuff, with regard to the
fact that we now take “one billion ” to represent one thousand million , rather than one mil-
lion million.

SECTION 2 Components and Processes198

system by means of tri-state gates. 14 Enabling the tri-state gates allows the
device to drive data onto the data bus, while disabling them allows other
devices to drive the data bus.

 In addition to its address and data buses, a ROM requires a number of con-
trol signals, the two most common being ~ chip_select and ~ read. (The ~ read
control is sometimes called ~ output_enable. Alternatively, some devices have
both ~ read and ~ output_enable controls.) These control signals are commonly
active-low; that is, they are considered to be ON when a logic 0 is applied. 15 The
~ chip_select signal indicates to the ROM that its attention is required, and it is
combined with the ~ read signal to form an internal signal (called ~ rd in this
example), which is used to control the tri-state gates (Figure 15.4).

 When the ~ rd signal is active (logic 0), the tri-state gates are enabled and the
data stored in the word selected by the address bus is driven out onto the data
bus. When ~ rd is inactive, the tri-state gates are disabled and the outputs from
the device are placed into high-impedance Z states.

~chip_select

~rd

~rd

~read

data_bus[3:0]

External
system

Control
decoder

External
system Memory

device

Memory
device

Tri-state
gates

in

out

address_bus[2:0]

000

001

010

011

100

101

110

111

FIGURE 15.4
 ROM control decoding and data bus.

 14 Tri-state gates were introduced in Chapter 11: Slightly More Complex Functions .
 15 Tilde “~ ” characters prefi xing signal names are used to indicate that these signals are
active-low. The use of tilde characters is discussed in detail in Appendix A: Assertion-Level
Logic .

Memory ICs CHAPTER 15 199

 RAM WITH SEPARATE DATA IN AND DATA OUT
BUSSES
 In addition to the control signals used by ROMs, RAMs require a mechanism
to control the writing of new data into the device. These components usu-
ally have an additional control signal called something like ~ write, which is
also active-low. Once again, the ~ chip_select signal indicates to the RAM
that its attention is required, and it is combined with the ~ read signal to
form an internal ~ rd signal that is used to control the tri-state gates. Additionally,
the ~ chip_select signal is combined with the ~ write signal to form an internal
~ wr signal. First, let’s consider a device that employs separate buses for writing
data into the memory array and reading data out of the array (Figure 15.5).

 When ~ wr is active, the data present on the data in bus is written into the
word selected by the address bus. The contents of the word pointed to by
the address bus are always available at the output of the array, irrespective of

~write

~w
r

~rd

~chip_select
~read

data_out[3:0]

data_in[3:0]

External
system

External
system

Memory
device

Memory
device

Tri-state
gates

address_bus[2:0]

000

001

010

011

100

101

110

111

FIGURE 15.5
 RAM with separate data in and data out busses.

SECTION 2 Components and Processes200

the value on ~ wr. Therefore, devices of this type may be written to and read
from simultaneously. 16

 RAM WITH SINGLE BIDIRECTIONAL BUS
 In contrast to those devices with separate data in and data out buses as discussed
above, the majority of RAMs use a common bus for both writing and reading. In
this case, the ~ read and ~ write signals are usually combined into a single control
input called something like read~write (the name read~write indicates that a logic
1 on this signal is associated with a read operation, while a logic 0 is associated
with a write). When the ~ chip_select signal indicates to the RAM that its attention
is required, the value on read~write is used to determine the type of operation to
be performed. If read~write carries a logic 1, the internal ~ rd signal is made active
and a read operation is initiated; if read~write carries a logic 0 , the internal ~ wr sig-
nal is made active and a write operation is executed (Figure 15.6).

~chip_select

~wr

~rd

read~write

data_bus[3:0]

Data in

Data out

External
system

External
system Memory

device

Memory
device

address_bus[2:0]

000

001

010

011

100

101

110

111

FIGURE 15.6
 RAM with a single
bidirectional data bus.

 16 Note that we’re simplifying everything here for clarity. In the case of a RAM with separate
data in and data out busses, we would also typically have two address buses—one to specify
the read address and the other to specify the write address. Known as a dual-port RAM, this
allows a word of data to be read out of one location while simultaneously writing a new
word of data into another location.

Memory ICs CHAPTER 15 201

 When ~ rd is active (and therefore ~ wr is inactive), the tri-state gates are enabled
and the data from the word selected by the address bus is driven onto the data
bus. When ~ wr is active (and therefore ~ rd is inactive), the tri-state gates are dis-
abled. This allows external devices to place data onto the data bus to be written
into the word selected by the address bus.

 If the value on the address bus changes while ~ rd is active, the data associ-
ated with the newly selected word will appear on the data bus. However, it is
not permissible for the value on the address bus to change while ~ wr is active
because the contents of multiple locations may be corrupted.

 INCREASING WIDTH AND DEPTH
 Individual memory devices can be connected together to increase the width
and depth of the total memory as seen by the rest of the system. For example,
two 1024-word devices, each 8 bits wide, can be connected so as to appear to
be a single 1024-word device with a width of 16 bits. An address bus contain-
ing 10 bits is required to select between the 1024 words (Figure 15.7).

9:0

read~write
~chip_select

data_bus[15:0]

address_bus[9:0]

9:0
csrw

rwcs

[15:8]

[7:0]

FIGURE 15.7
 Connecting memory devices to increase the width.

 In this case, the address bus and control signals are common to both mem-
ories, but each device handles a subset of the signals forming the data bus.
Additional devices can be added to further increase the total width of the data
bus as required. Alternatively, two 1024-word devices, each 8 bits wide, can be
connected so as to appear to be a single device with a width of 8 bits and a
depth of 2048 words. An address bus containing 11 bits is required to select
between the 2048 words (Figure 15.8).

SECTION 2 Components and Processes202

 In this case, the data bus, the ten least-signifi cant bits of the address bus, and
the read~write control are common to both memories. However, the Most
Signifi cant Bit (MSB) of the address bus is decoded to generate two ~ chip_select
signals. A logic 0 on the most-signifi cant bit of the address bus selects the fi rst
device and deselects the second, while a logic 1 deselects the fi rst device and
selects the second.

 Additional address bits can be used to further increase the total depth as
required. If the address bus in the previous example had contained 12 bits, the
two most-signifi cant bits could be passed through a 2:4 decoder to generate
four ~ chip select signals. These signals could be used to control four 1024-word
devices, making them appear to be a single memory with a width of 8 bits and
a depth of 4096 words.

 MASK-PROGRAMMED ROMS
 ROM devices are said to be mask-programmed (or sometimes mask-programmable)
because the data they contain is hard-coded into them during their construc-
tion (using photo-masks as was discussed in the previous chapter).

 For example, consider a transistor-based ROM cell that can hold a single bit of
data (Figure 15.9). The entire ROM consists of a number of row (word) and column
(data) lines forming an array. Each column has a single pull-up resistor attempting
to hold that column to a weak logic 1 value, and every row-column intersection
has an associated transistor and—potentially—a mask-programmed connection.

9:0

read~write

data_bus[7:0]

address_bus[10:0]

9:0
csrw

rwcs

bit 10
(address _bus)

FIGURE 15.8
 Connecting memory devices to increase the depth.

Memory ICs CHAPTER 15 203

 The majority of the ROM can be preconstructed and the same underlying
architecture can be used for multiple customers. When it comes to customiz-
ing the device for use by a particular customer, a single photo-mask is used
to defi ne which cells are to include mask-programmed connections and which
cells are to be constructed without such connections.

 Now consider what happens when a row line is placed in its active state,
thereby attempting to activate all of the transistors connected to that row. In
the case of a cell that includes a mask-programmed connection, activating that
cell’s transistor will connect the column line through the transistor to logic 0,
so the value appearing on that column as seen from the outside world will be
a logic 0. By comparison, in the case of a cell that doesn’t have a mask-pro-
grammed connection, that cell’s transistor will have no effect, so the pull-up
resistor associated with that column will hold the column line at logic 1, which
is the value that will be presented to the outside world.

 PROMS
 The problem with mask-programmed devices is that creating them is a very
expensive pastime unless you intend to produce them in extremely large quan-
tities. Furthermore, such components are of little use in a development envi-
ronment in which you often need to modify their contents.

 For this reason, the fi rst Programmable Read-Only Memory (PROM) 17 devices
were developed at Harris Semiconductor in 1970. These devices were created

Logic 1

Pull-up resistor

Row
(word) line

Column
(data) line

Mask-programmed
connection

Transistor

Logic 0

FIGURE 15.9
 A transistor-based mask-programmed ROM cell.

 17 In conversation, PROM is pronounced just like the high school dance of the same name.

SECTION 2 Components and Processes204

using a nichrome-based fusible-link 18 technology. As a generic example, con-
sider a somewhat simplifi ed representation of a transistor-and-fusible-link-
based PROM cell (Figure 15.10).

 In its unprogrammed state as provided by the manufacturer, all of the fus-
ible links in the device are present. In this case, placing a row line in its active
state will turn on all of the transistors connected to that row, thereby causing
all of the column lines to be pulled-down to logic 0 via their respective transis-
tors. However, design engineers can selectively remove (blow) undesired fuses
by applying pulses of relatively high voltage and current to the device’s inputs.
Wherever a fuse is removed (“blown ”), that cell will appear to contain a logic 1.

 PROMs were initially intended to be used as memories to store computer pro-
grams and constant data values (hence, the ROM portion of their appellation).
However, design engineers also found them useful for implementing sim-
ple logical functions such as lookup tables and state machines. The fact that
PROMs were relatively cheap meant that these functions could be quickly mod-
ifi ed to fi x bugs or test new implementations by simply burning a new device
and plugging it into the system.

 PROMs are said to be One-Time Programmable (OTP), because once you’ve pro-
grammed one and blown its fuses there’s no going back. PROMs are slightly
slower than their ROM equivalents, but are signifi cantly cheaper for small- to
medium-sized production runs.

Logic 1

Pull-up resistor

Row
(word) line

Column
(data) line

Fusible link

Transistor

Logic 0

FIGURE 15.10
 A transistor-and-fusible-link-based PROM cell.

 18 See also the discussions on the Fusible Link and Antifuse technologies in Chapter 16:
Programmable ICs .

Memory ICs CHAPTER 15 205

 EPROMS
 As was previously noted, one consideration associated with devices based on
fusible-link technologies is that they can only be programmed a single time—
once you’ve blown a fuse it’s too late to change your mind. (In rare cases it’s
possible to incrementally modify devices by blowing additional fuses, but the
fates have to be smiling in your direction.) For this reason, people started to
think that it would be nice if there were some way to create devices that could
be programmed, erased, and reprogrammed with new data.

 One alternative is a technology known as Erasable Programmable Read-Only
Memory (EPROM); the fi rst such device, the 1702, was introduced by Intel in
1971. An EPROM transistor has the same basic structure as a standard MOSFET
transistor, but with the addition of a second polysilicon fl oating gate isolated
by layers of oxide (Figure 15.11).

 In its unprogrammed state, the fl oating gate is uncharged and doesn’t affect the
normal operation of the control gate. In order to program the transistor, a rela-
tively high voltage 19 is applied between the control gate and drain terminals.
This causes the transistor to be turned hard on, and energetic electrons force
their way through the oxide into the fl oating gate in a process known as hot
electron injection (or high energy injection).

 When the programming signal is removed, a negative charge remains on the
fl oating gate. This charge is very stable and will not dissipate for more than

Control gate

Source Drain

Control gate

Floating gate

Source Drain

(a) Standard MOS transistor (b) EPROM transistor

Silicon
substrate

Silicon
dioxide

Source
terminal

Control gate
terminal

Drain
terminal

Source
terminal

Control gate
terminal

Drain
terminal

FIGURE 15.11
 Standard MOSFET versus EPROM transistors.

 19 Not outrageously high; just higher than the typical signal levels. There’s no point in our
specifying the programming voltage here, because it keeps on falling with the advent of new
technology nodes.

SECTION 2 Components and Processes206

a decade under normal operating condi-
tions. The stored charge on the fl oating gate
inhibits the normal operation of the control
gate, and, thus, distinguishes those cells that
have been programmed from those which
have not. This means we can use such a tran-
sistor to form a memory cell (Figure 15.12).

 Observe that this cell no longer requires a fus-
ible link or mask-programmed connection.
In its unprogrammed state as provided by the
manufacturer, all of the fl oating gates in the

EPROM transistors are uncharged. In this case, placing a row line in its active state
will turn on all of the transistors connected to that row, thereby causing all of the
column lines to be pulled-down to logic 0 via their respective transistors. In order
to program the device, engineers can use the inputs to the device to charge the
fl oating gates associated with selected transistors, thereby disabling those transis-
tors. In these cases, the cells will appear to contain logic 1 values.

 As they are an order of magnitude smaller than fusible links, EPROM cells are
effi cient in terms of silicon real estate. Their main claim to fame, however, is that
they can be erased and reprogrammed. An EPROM cell is erased by discharging
the electrons on that cell’s fl oating gate. The energy required to discharge the
electrons is provided by a source of Ultraviolet (UV) radiation. An EPROM device
is delivered in a ceramic or plastic package with a small quartz window in the
top, which is usually covered with a piece of opaque sticky tape. In order for
the device to be erased, it is fi rst removed from its host circuit board, its quartz
window is uncovered, and it is placed in an enclosed container with an intense
ultraviolet source.

 The main problems with EPROM devices are their expensive packages with quartz
windows and the time it takes to erase them, which is in the order of 20 minutes.
A foreseeable problem with future devices is paradoxically related to improve-
ments in the process technologies that allow transistors to be made increasingly
smaller. As the structures on the device become smaller and the density (number
of transistors and interconnects) increases, a larger percentage of the surface of the
die is covered by metal. This makes it diffi cult for the EPROM cells to absorb the
ultraviolet light and increases the required exposure time.

 When EPROMs fi rst appeared on the scene, engineers found them ideal for
prototyping and other applications that required regular changes to the stored

Logic 1

Pull-up resistor

Row
(word) line

Column
(data) line

EPROM
transistor

Logic 0

FIGURE 15.12
 An EPROM
transistor-based
memory cell.

Memory ICs CHAPTER 15 207

data. If was common practice for EPROMs to be used
during the development of a design and then sub-
sequently replaced by equivalent PROM devices in
cheaper plastic packages after the design had stabilized.

 EEPROMS/E 2 PROMS
 A further technology, called Electrically-Erasable Read-
Only Memory (EEPROM or E 2PROM) was developed
towards the end of the 1970s. An E 2PROM cell is
approximately 2.5 times larger than an equivalent EPROM cell because it com-
prises two transistors and the space between them (Figure 15.13).

 The E 2PROM transistor is similar to that of an EPROM transistor in that it
contains a fl oating gate, but the insulating oxide layers surrounding this gate
are very much thinner. The second transistor can be used to erase the cell
electrically.

 Thus, E 2PROM devices are electrically programmable by the designer and are non-
volatile, but can be electrically erased and reprogrammed should the designer
so desire. Unlike an EPROM device that must be erased and reprogrammed in its
entirety, an E 2PROM can be erased and reprogrammed on a word-by-word basis.
Additionally, by means of additional circuitry, an E 2PROM can be erased and repro-
grammed while remaining resident on the circuit board, in which case it may be
referred to as In-System Programmable (ISP).

 FLASH
 Yet another technology called FLASH is generally regarded as an evolutionary
step that combines the best features from EPROM and E 2PROM. The name
FLASH was originally coined to refl ect its fast reprogramming time compared to
EPROM. FLASH has been under development since the end of the 1970s, and
was offi cially described in 1985, but the technology did not initially receive a
great deal of interest. Toward the end of the 1980s, however, the demand for
portable computer and communication systems increased dramatically, and
FLASH began to attract the attention of designers.

 All variants of FLASH are electrically erasable like E 2PROMs. Some devices
are based on a single transistor cell, which provides a greater capacity than an
E2PROM, but which must be erased and reprogrammed on a device-wide basis
similar to an EPROM. Other devices are based on a dual transistor cell and can
be erased and reprogrammed on a word-by-word or block-by-block basis.

E2PROM Cell

Normal
MOS transistor

E2PROM
transistor

FIGURE 15.13
 An E 2 PROM cell.

SECTION 2 Components and Processes208

 FLASH is considered to be of particular value when the designer requires the
ability to reprogram a system in the fi eld or via a communications link while
the devices remain resident on the circuit board.

 SRAMS AND DRAMS
 In the case of Dynamic RAMs (DRAMs), each cell is formed from a transistor-
capacitor pair. The term dynamic is applied because a capacitor loses its charge
over time and each cell must be periodically recharged to retain its data. This
operation, known as refreshing, requires the contents of each cell to be read out
and then rewritten. Some types of DRAM require external circuitry to supervise
the refresh process, in which case a special independent controller device is
employed to manage a group of DRAMs. In other cases, a DRAM may contain
its own internal self-refresh circuitry.

 In the case of Static RAMs (SRAMs), each cell is formed from four or six tran-
sistors confi gured as a latch or a fl ip-fl op. 20 The term static is applied because,
once a value has been loaded into an SRAM cell, it will remain unchanged
until it is explicitly altered or until power is removed from the device.

 SRAMs are much faster than DRAMs, but each SRAM cell requires signifi cantly
more silicon real estate and consumes much more power than a corresponding
DRAM cell. The fi rst SRAM (256-bit) and DRAM (1024-bit) devices were both
created in 1970. For the next few decades, both types of memory quadrupled
their capacities approximately every three years, but by the beginning of the
21st century this had slowed to a doubling every two to three years.

 These days, DRAM (in its SDRAM incarnation as discussed in the next topic)
is used to satisfy the bulk of a system’s RAM requirements, while SRAM is used
where speed is of the essence; for example, the cache memory inside a CPU.

 SDRAMS
 Until the latter half of the 1990s, DRAM-based computer memories were asynchro-
nous, which means they weren’t synchronized to the system clock. Every new genera-
tion of computers used a new trick to boost speed, and even the engineers started to
become confused by the plethora of names, such as Fast Page Mode (FPM), Extended
Data Out (EDO), and Burst EDO (BEDO). In reality, these were all based on core

 20 See also Chapter 17: Application-Specifi c Integrated Circuits (ASICs) for discussions on 1T
versus 6T SRAM.

Memory ICs CHAPTER 15 209

DRAM concepts; the differences were largely in
how one wired the chips together on the circuit
board (OK, sometimes there was a bit of tweak-
ing inside the chips also).

 Over time, the industry migrated to Synchronous
DRAM (SDRAM), which refers to a memory
subsystem that is synchronized to the system
clock, thereby making everyone’s lives much
easier. Once again, SDRAM is based on under-
lying DRAM concepts—it’s all in the way you
tweak the chips and connect them together.
There are lots of nitty-picky details that we won’t go into here; all we need to know
for the purpose of these discussions is that SDRAM is based on DRAM arranged
in multiple banks that are interleaved together and accessed via a multiplexer. For
example, consider a scenario with four banks as illustrated in Figure 15.14 .

 Now, this is obviously an extremely oversimplifi ed representation; for example,
we haven’t shown the clock signal coming from the main system, or any regis-
ters that would be used to latch the outputs, or any mechanism by which we
could write data into the memory subsystem; on the other hand, this illustra-
tion will serve the purposes of these discussions.

 Now, suppose that we previously loaded a big, multi-word “chunk ” of data into
our SDRAM subsystem. As we know, each DRAM bank is relatively slow, com-
pared to an SRAM equivalent. Thus, if we had stored our block of data in con-
tiguous locations in the same bank of DRAM, it would take us a relatively long
time to read it out again (which is, of course, why we don’t do it that way).

 Instead, the fi rst word of data would be stored in bank 0, the second word in
bank 1, the third word in bank 2, and the fourth word in bank 3; then we con-
tinue with the fi fth word in bank 0, the sixth word in bank 1, the seventh word
in bank 2 … and so forth. Now, when we wish to retrieve our data, we can
fl ick from bank to bank. In this case, we would use the multiplexer to select the
output from bank 0 (which contains the fi rst word of data), latch this data, and
present it to the main system. We would then use the multiplexer to select the
output from bank 1 (which contains the second word of data), latch this data,
and present it to the main system. And so on for bank 2 (containing the third
word) and bank 3 (containing the fourth word).

 The point is that as soon as the multiplexer has turned its attention away from
bank 0, the subsystem can direct it to start retrieving the fi fth word of data;

D
R

A
M

 B
an

k
0

M
ul

tip
le

xe
r

To main
system

SDRAM subsystem

D
R

A
M

 B
an

k
1

D
R

A
M

 B
an

k
2

D
R

A
M

 B
an

k
3

FIGURE 15.14
 An example SDRAM
subsystem with four
banks of DRAM.

SECTION 2 Components and Processes210

similarly, as soon as the multiplexer moves on from bank 1, the subsystem can
direct it to start retrieving the sixth word of data. Thus, when the multiplexer
eventually cycles back to bank 0, it already has the fi fth word of data ready and
waiting. By this means, the interleaved banks of DRAM can be used to store
and retrieve data much faster than would be possible using a single bank.

 DDR, DDR2, DDR3, QDR, RAMBUS, ETC.
 The original Single Data Rate (SDR) SDRAM specifi cation was based on
using only one of the clock edges (say the rising edge) to read/write
data out-of/into the memory, as illustrated in Figure 15.15(a) .

 By comparison, Double Data Rate (DDR) SDRAM uses a technique
called double pumping to double the bandwidth (the amount of data
that can be transferred in a given amount of time) without increas-
ing the clock frequency. It achieves this by transferring data on both
the rising and falling edges of the clock signal, as illustrated in Figure
15.15(b) (this sounds simple if you say it quickly, but actually making
this work is trickier than it may at fi rst appear).

 DDR2 is essentially a later generation of DDR that provides higher perfor-
mance than its ancestor; similarly, DDR3 uses cunning tricks to out-perform
DDR2. [This is probably as good a time as any to mention the concept of Quad
Data Rate (QDR) memory, which has separate data in and data out busses,
both of which can be used on both edges of the clock.]

 Today, virtually all SDRAM implementations are manufactured in compliance
with standards established by JEDEC, which is an electronics industry associa-
tion that adopts open standards to facilitate interoperability of electronic com-
ponents. By comparison, Direct Rambus DRAM or DRDRAM (sometimes just
called Rambus DRAM or RDRAM) is a proprietary type of SDRAM designed by
the Rambus Corporation. Extreme Data Rate (XDR) DRAM was the successor to
RDRAM, while XDR2 DRAM is the successor to XDR DRAM.

 SIMMS, DIMMS, AND RIMMS
 Whichever fl avor of DRAM you are using, a single device can only contain a
limited amount of data, so a number of DRAMs are gathered together onto a
small circuit board called a memory module. Each memory module has a line of
gold-plated pads on both sides of one edge of the board. These pads plug into
a corresponding connector on the main computer board.

SDR reads/writes data on
only one clock edge

(a)

clock

clock

DDR reads/writes data on
both clock edges

(b)

FIGURE 15.15
 SDR versus
DDR SDRAM
implementations.

Memory ICs CHAPTER 15 211

 A Single In-Line Memory Module (SIMM) has the same electrical signal on cor-
responding pads on the front and back of the board (that is, the pads on oppo-
site sides of the board are “tied together ”). By comparison, in the case of a Dual
In-Line Memory Module (DIMM), the pads on opposite sides of the board are
electrically isolated from each other and form two separate contacts.

 Last but not least, we have the RIMM, which really doesn’t stand for anything
per se, but which is the trademarked name for a Rambus Memory Module.
(RIMMs are similar in concept to DIMMs, but have a different pin count and
confi guration.)

 ECC MEMORY
 Computer systems are very complicated and there’s always the chance that an
error will occur when reading or writing to the memory (a stray pulse of noise
may fl ip a logic 0 into a logic 1, or vice versa, while your back is turned). Thus,
serious computers use Error-Correcting Code (ECC) memory, which includes
extra bits and special circuitry that tests the accuracy of data as it passes in and
out of memory and corrects any (simple) errors.

 MRAMS
 A technology that continues to attract a great deal of interest for the future is
Magnetoresistive Random Access Memory (MRAM), which may be able to store
more data, read and write data faster, and use less power than any of the current
memory technologies. In fact, the seeds of MRAM were laid as far back as 1974,
when IBM developed a component called a Magnetic Tunnel Junction (MTJ),
which comprises a sandwich of two ferromagnetic layers separated by a thin
insulating layer. A memory cell is created by the intersection of two wires (say
a row line and a column line) with an MJT sandwiched between them. MRAMs
have the potential to combine the high speed of SRAM, the storage capacity of
DRAM, and the nonvolatility of FLASH, while consuming very little power.

 Thus far, ongoing improvements in conventional memory technologies have kept
MRAM in a niche role, but lots of folks believe that that MRAM has so many
advantages that it will eventually take center stage.

 NVRAMS, FRAMS, PRAMS, RRAMS, CBRAMS,
SONOS, ETC.
 Last but not least, we have a class of devices known as Nonvolatile RAMs
(nvRAMs). Historically, these little rascals were formed from an SRAM die

SECTION 2 Components and Processes212

mounted in a package with a very small battery, or as a mixture of SRAM and
E2 PROM (later SRAM and FLASH) cells fabricated on the same die.

 Over recent years, a lot of experimental nvRAM technologies have popped-up
to shout a cheery “Hello!” These include (but are not limited to) Ferroelectric
RAM (FeRAM or FRAM), Phase-Change Memory (also known as PCM, PRAM,
or PCRAM), Resistive Random Access Memory (RRAM), Conductive-Bridging RAM
(CBRAM), and SONOS (short for Silicon-Oxide-Nitride-Oxide-Silicon, which
describes the layers of materials forming the memory cell).

213

 A SIMPLE PROGRAMMABLE FUNCTION
 Before we move on to consider some actual devices, let’s fi rst set the scene with
some fundamental concepts. As a basis for these discussions, let’s start by con-
sidering a very simple programmable function with two inputs called a and b ,
and a single output called y (Figure 16.1).

 The inverting (NOT) gates associated with the inputs mean that each input
is available in both its true (unmodifi ed) and complemented (inverted) form.
Observe the locations of the “potential links. ” In the absence of any of these
links, all of the inputs to the AND gate are connected via pull-up resistors to
a logic 1 value. In turn, this means that the output y will always be driving a
logic 1, which makes this circuit a very boring one in its current state. In order
to make our function more interesting, we need some mechanism that allows
us to establish one or more of the potential links …

 CHAPTER 16 CHAPTER 16

 Programmable ICs

a

Logic 1

y � 1 (N/A)&

b

Pull-up resistors

Potential links

NOT

NOT

AND

FIGURE 16.1
 A simple programmable function.

SECTION 2 Components and Processes214

 FUSIBLE-LINK TECHNOLOGIES
 One of the fi rst techniques that allowed users to program their own devices
was—and still is—known as fusible-link technology. In this case, the device is
manufactured with all of the links in place, where each link is referred to as a
fuse (Figure 16.2).

 These fuses are similar in concept to the fuses you fi nd in household products like
a television. If anything untoward occurs, such that the television starts consuming
too much power, its fuse will burn out. This results in an open circuit (a break in
the wire), which protects the rest of the unit from harm. Of course, the fuses in a
silicon chip are formed using the same processes that are employed to create the
transistors and wires on the chip, so they are microscopically small.

 When an engineer purchases a programmable device based on fusible links, all of
the fuses are initially intact. This means that, in its unprogrammed state, the output
from our example function will always be logic 0. This is because any 0 presented
to the input of an AND gate will cause its output to be 0, so if input a is 0, the out-
put from the AND will be 0; alternatively, if input a is 1, then the output from its
NOT gate (which we shall call !a, meaning “not a ”) 1 will be 0, and once again, the
output from the AND will be 0. A similar situation occurs in the case of input b .

 The point is that design engineers can selectively remove undesired fuses by
applying pulses of relatively high voltage and current to the device’s inputs. For
example, consider what happens if we remove fuses Faf and Fbt (Figure 16.3).

a

Logic 1

y � 0 (N/A)&

b

Pull-up resistors

NOT

NOT

AND

Fat

Faf

Fbt

Fbf

Fuses

FIGURE 16.2
 Augmenting our example function with unprogrammed fusible links.

 1 Actually, this isn’t a particularly great naming convention because (for reasons that are
more fully discussed in Appendix A: Assertion-Level Logic) it could lead to confusion in every-
day usage; however, it will serve our purpose here.

Programmable ICs CHAPTER 16 215

 Removing these fuses disconnects the complementary version of input a and the
true version of input b from the AND gate (the pull-up resistors associated with
these signals cause their associated inputs to the AND to be presented with logic
1 values). This leaves the device to perform its new function, which is y � a &
 !b. (The “ & ” character in this equation is used to represent the AND, while the
“! ” character is used to represent the NOT.) Previously, we used a horizontal bar
over a signal name to indicate a negation, this is just another representation. This
process of removing fuses is typically referred to as “programming the device, ”
but it may also be referred to as “ blowing the fuses ” or “ burning the device. ”

 Devices based on fusible-link technologies are said to be One-Time
Programmable (OTP), because once a fuse has been blown it cannot be replaced
and there’s no going back.

 ANTIFUSE TECHNOLOGIES
 As a diametric alternative to fusible-link technologies, we have their antifuse coun-
terparts, in which each confi gurable path has an associated link called an antifuse .
In its unprogrammed state, an antifuse has such a high resistance that it may be
considered to be an open circuit (a break in the wire) as illustrated in Figure 16.4 .

 This is the way the device appears when it is fi rst purchased. However, antifuses
can be selectively “ grown ” (programmed) by applying pulses of relatively high
voltage and current to the device’s inputs. For example, if we add the antifuses
associated with the complementary version of input a and the true version of
input b , our device will now perform the function y � !a & b (Figure 16.5).

 An antifuse commences life as a microscopic column of amorphous (noncrystalline)
silicon linking two metal tracks. In its unprogrammed state, the amorphous

a

Logic 1

y � a & !b&

b

Pull-up resistors

NOT

NOT

AND

Fat

Fbf

FIGURE 16.3
Programming (blowing) some of the fusible links.

SECTION 2 Components and Processes216

silicon acts as an insulator with a very high resistance, in excess of one billion ohms
[Figure 16.6(a)].

 The act of programming this particular element effectively “grows ” a link—also
known as a via—by converting the insulating amorphous silicon into conduct-
ing polysilicon [Figure 16.6(b)].

a

Logic 1

y � 1 (N/A)&

b

Pull-up resistors

Unprogrammed
antifuses

NOT

NOT

AND

FIGURE 16.4
 Unprogrammed antifuses.

a

Logic 1

y � !a & b&

b

Pull-up resistors

NOT

NOT

AND

Programmed
antifuses

FIGURE 16.5
 Programmed antifuse links.

(a) Before programming

Substrate

Metal

Oxide

Metal

Amorphous silicon column

(b) After programming

Polysilicon via

FIGURE 16.6
 Growing an antifuse.

Programmable ICs CHAPTER 16 217

 Not surprisingly, devices based on antifuse technologies are One-Time
Programmable (OTP), because once an antifuse has been grown it cannot be
removed and there’s no changing your mind.

 EPROM, E 2 PROM, FLASH, AND SRAM
TECHNOLOGIES
 In Chapter 15: Memory ICs, we introduced a variety of memory technologies,
including EPROM, E 2PROM, and FLASH. Although we don’t want to go into
the nitty-gritty details here, the point is that we could take our example func-
tion illustrated in Figure 16.1 and use EPROM transistors to implement its pro-
grammable links. Alternatively, we could create its programmable links using
E2 PROM cells or FLASH technology.

 As yet one fi nal alternative, we could realize program-
mable links based on SRAM cells, as illustrated in
Figure 16.7 . In this case, the entire cell comprises a
multi-transistor SRAM storage element whose output
drives an additional control transistor. Depending on
the contents of the storage element (logic 0 or logic 1),
the control transistor will either be OFF (disabled) or ON (enabled).

 One disadvantage of having a programmable device based on SRAM cells is that
each cell consumes a signifi cant amount of silicon real estate, because these
cells are formed from four or six transistors confi gured as a latch or a fl ip-fl op.
Another disadvantage is that the device’s confi guration data (programmed state)
will be lost when power is removed from the system. In turn, this means that
these devices always have to be reprogrammed when the system is powered-on.
However, such devices have the corresponding advantage that they can be
reprogrammed quickly and repeatedly as required.

 THE FIRST PROGRAMMABLE LOGIC DEVICES (PLDS)
 The fi rst programmable integrated circuits were generically referred to as
Programmable Logic Devices (PLDs). The original components—which started
arriving on the scene in 1970 in the form of PROMs—were rather simple, but
everyone was too polite to mention it.

 Just to increase our fun and frivolity, engineers love to use the same acronym
to mean different things or different acronyms to mean the same thing (listen-
ing to a gaggle of engineers regaling each other in conversation can make even
the strongest mind start to “throw a wobbly ”). In the case of the early PLDs,
for example, there is a multiplicity of underlying architectures, many of which

SRAM FIGURE 16.7
 An SRAM-based
programmable cell.

SECTION 2 Components and Processes218

have acronyms formed from different combinations of the same three or four
letters. Let’s take a snapshot of the early days as illustrated by Figure 16.8 , and
then we’ll ponder these devices in a little more detail.

 Of course there are also EPLD, E 2PLD, and FLASH versions of these devices
(EPROMs and E 2PROMs, for example), but these variants have been omitted
from Figure 16.8 for purposes of simplicity.

 PROMS
 The fi rst of the simple PLDs were Programmable Read-Only Memories (PROMs),
which jumped into the limelight in 1970. One way to visualize the manner in
which these devices perform their magic is to consider them as consisting of a
fi xed array of AND functions driving a programmable array of OR functions.
For the purposes of these discussions, let’s consider a hypothetical 3-input,
3-output PROM as illustrated in Figure 16.9 .

PLDs

PLAsPROMs PALs GALs etc.

FIGURE 16.8
 A snapshot of the
early days of PLDs
technology.

w x y

a b c

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address 7

a !a b !b c !c

!a & !b & !c

!a & b & !c

!a & !b & c

!a & b & c

 a & !b & !c

 a & !b & c

 a & b & !c

 a & b & c

Predefined AND array

P
ro

gr
am

m
ab

le
 O

R
 a

rr
ay

&

&

&

&

&

&

&

&

I I I

Predefined link

Programmable link

FIGURE 16.9
Unprogrammed PROM (predefi ned AND array, programmable OR array).

Programmable ICs CHAPTER 16 219

 Depending on the whim of the manufacturer, the programmable links in
the OR array might be implemented as fusible links, as EPROM transis-
tors, E 2PROM cells, or FLASH. 2 It is important to note that this illustration is
intended only to provide a high-level view of the way in which our example
device works—it does not represent an actual circuit diagram. In reality, each
AND function in the AND array has three inputs provided by the appropriate
true or complemented versions of the a, b, and c device inputs. Similarly, each
OR function in the OR array has eight inputs provided by the outputs from the
AND array.

 As we discussed in Chapter 15: Memory ICs, PROMs were originally intended
for use as computer memories in which to store program instructions and
constant data values. However, design engineers also used them to implement
simple logical functions such as lookup tables and state machines. In fact, a
PROM can be used to implement any block of combinational 3 logic so long
as it doesn’t have too many inputs or outputs. The simple 3-input, 3-output
PROM shown in Figure 16.9 , for example, can be used to implement any
combinatorial function with up to three inputs and three outputs. In order to
illustrate the way in which this works, consider the small block of logic shown
in Figure 16.10 (this circuit has no signifi cance beyond the purposes of this
example).

 2 Simple PLDs didn’t (and don’t) use antifuse or SRAM programming technologies.
 3 Some folks prefer the term combinatorial .

a b c w x y

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 0 0

&
a

b

c

w

x

yI

FIGURE 16.10
 A small block of combinational logic.

 We could replace this block of logic with our 3-input, 3-output PROM. All that
would be required would be to program the appropriate links in the OR array
(Figure 16.11).

SECTION 2 Components and Processes220

 With regard to the equations shown in this fi gure, “ & ” represents AND, “| ” rep-
resents OR, “^ ” represents XOR, and “! ” represents NOT. 4 , 5 , 6 , 7 This syntax (or
numerous variations thereof) was very common in the early days of PLDs,
because it allowed logical equations to be easily and concisely represented in
text fi les using standard computer keyboard characters.

 The example shown above is, of course, very simple. Real PROMs can have signifi -
cantly more inputs and outputs, and can therefore be used to implement larger
of blocks of combinational logic. From the mid-1960s until the mid-1980s (or
later), combinational logic was commonly implemented by means of jelly bean ICs
such as the Texas Instruments 74xx series devices. The fact that quite a large number
of these jelly bean chips could be replaced with a single PROM resulted in circuit

w x y

a b c

Address 0

Address 1

Address 2

Address 3

Address 4

Address 5

Address 6

Address 7

a !a b !b c !c

!a & !b & !c

!a & b & !c

!a & !b & c

!a & b & c

 a & !b & !c

 a & !b & c

 a & b & !c

 a & b & c

w � (a & b)
x � !(a & b)
y � (a & b) ^ c

Predefined AND array

P
ro

gr
am

m
ab

le
 O

R
 a

rr
ay

&

&

&

&

&

&

&

&

I I I
Predefined link

Programmable link

FIGURE 16.11
 Programmed PROM.

 4 The “& ” (ampersand) character is commonly spoken of as an “amp” or “amper. ”
 5 The “| ” (vertical line) character is commonly spoken of as a “ bar, ” “or, ” or “ pipe. ”
 6 The “^” (circumfl ex) character is commonly spoken of as a “hat,” “control, ” “up-arrow, ” or “caret. ”
More rarely it may be referred to as a “chevron, ” “power of ” (as in “to the power of ”), or “shark-fi n. ”
 7 The “!” (exclamation mark) character is commonly spoken of as a “bang,” “ping,” or “shriek.”

Programmable ICs CHAPTER 16 221

boards that were smaller, lighter, cheaper, and less prone to error (each solder joint
on a circuit board provides a potential failure mechanism). Furthermore, if any logic
errors were subsequently discovered in this portion of the design (if the design engi-
neer had inadvertently used an AND function instead of a NAND, for example),
then these slip-ups could easily be fi xed by blowing a new PROM (or erasing and
reprogramming an EPROM or E 2PROM). This was much more preferable to the
ways in which errors had to be addressed on boards based on jelly bean ICs, which
included adding new devices to the board, cutting existing tracks with a scalpel, and
adding wires by hand to connect the new devices into the rest of the circuit.

 As we discussed in Chapter 9: Boolean Algebra, in logical terms, the AND (“ & ”)
operator is known as a logical multiplication or product, while the OR (“| ”) is
known as a logical addition or sum. Furthermore, when we have a logical equa-
tion in the form …

 y � (a & !b & c) | (!a & b & c) | (a &!b &!c) | (a &!b & c)

 … then the term literal refers to any true or inverted variable (a, !a, b, !b, etc.),
and a group of literals linked by “ & ” operators is referred to as a product term .
Thus, the product term (a & !b & c) contains three literals (a, !b, and c) and the
above equation is said to be in sum-of-products form.

 The point is that, when PROMs are employed to implement combinational
logic as illustrated in Figures 16.10 and 16.11 , they are useful for equations
requiring a large number of product terms, but they can only support relatively
few inputs because every input combination is always decoded and used. This
led engineers to start considering alternative architectures …

 PLAS
 In order to address the limitations imposed by the PROM architecture, the
next step up the PLD evolutionary ladder was that of Programmable Logic Arrays
(PLAs), which fi rst became available circa 1975. These were the most user-
confi gurable of the simple PLDs, because both the AND and OR arrays were
programmable. First, consider a simple 3-input, 3-output PLA in its unpro-
grammed state (Figure 16.12).

 Unlike a PROM, the number of AND functions in the AND array is indepen-
dent of the number of inputs to the device. Additional ANDs can be formed
by simply introducing more rows into the array. Similarly, the number of OR
functions in the OR array is independent of both the number of inputs to the
device and the number of AND functions in the AND array. Additional ORs can
be formed by simply introducing more columns into the array.

SECTION 2 Components and Processes222

 Now, assume that we wish our example PLA to implement the three equations
shown below. We can achieve this by programming the appropriate links as
illustrated in Figure 16.13 .

 w � (a & c) | (!b & !c)

 x � (a & b & c) ! (!b & !c)

 y � (a & b & c)

 As fate would have it, PLAs never achieved any signifi cant level of market pres-
ence, but several vendors experimented with different fl avors of these devices

w x y

a b c

a !a b !b c !c

 a & b & c

!b & !c

 a & b

Predefined AND array

P
ro

gr
am

m
ab

le
O

R
 a

rr
ay

&

&

&

I I I

Predefined link

Programmable link

w � (a & c) | (!b & !c)
x � (a & b & c) | (!b & !c)
y � (a & b & c)

FIGURE 16.13
 Programmed PLA.

w x y

a b c

a !a b !b c !c

N/A

N/A

N/A

Predefined AND array

P
ro

gr
am

m
ab

le
O

R
 a

rr
ay

&

&

&

I I I

Predefined link

Programmable link

FIGURE 16.12
 Unprogrammed PLA (programmable AND and OR arrays).

Programmable ICs CHAPTER 16 223

for a while. For example, PLAs were not obliged to have AND arrays feeding
OR arrays, and some alternative architectures such as AND arrays feeding NOR
arrays were occasionally seen “strutting their stuff. ” However, while it would be
theoretically possible to fi eld architectures such as OR-AND, NAND-OR, and
NAND-NOR, these variations were relatively rare or nonexistent. One reason the
designers of these devices tended to stick to AND-OR 8 (and AND-NOR) archi-
tectures was that the sum-of-products representations most often used to specify
logical equations could be directly mapped onto these structures. Other equa-
tion formats (like product-of-sums) could be accommodated using standard alge-
braic operations and transformations (these tasks were typically performed by
software programs that could perform these techniques with their metaphorical
hands tied behind their backs).

 PLAs were touted as being particularly useful for large designs, whose logical equa-
tions featured a lot of common product terms that could be used by multiple out-
puts [for example, the product term (!b & c) is used by both the w and x outputs in
Figure 16.13]. This feature is referred to as product-term sharing .

 On the downside, signals take a relatively long
time to pass through programmable links as
opposed to their predefi ned counterparts. Thus,
the fact that both their AND and OR arrays were
programmable meant that PLAs were signifi cantly
slower than PROMs.

 PALS AND GALS
 In order to address the speed problems posed by
PLAs, a new class of device called Programmable
Array Logic (PAL) 9 was introduced in the late
1970s. Conceptually, a PAL is almost the exact
opposite of a PROM, because it has a program-
mable AND array and a predefi ned OR array. As
an example, consider a simple 3-input, 3-output
PAL in its unprogrammed state (Figure 16.14).

 8 Actually, one designer I talked to told me that his team created a NOT-NOR-NOR-NOT
architecture (this apparently offered a slight speed advantage) but they told their customers
it was an AND-OR architecture (which is how it appeared to the outside world): “ … because
that was what they were expecting. ” Even today, what device vendors say they build and what
they actually build are not necessarily the same thing.
 9 PAL is a registered trademark of Monolithic Memories Inc.

w x y

a b c

a !a b !b c !c

Programmable AND array

P
re

d
e

fin
e

d
 O

R
 a

rr
a

y

&

&

&

&

&

&

I I I

Predefined link

Programmable link

FIGURE 16.14
 Unprogrammed PAL
(programmable AND
array, predefi ned OR
array).

SECTION 2 Components and Processes224

 In 1983, Lattice Semiconductor Corporation introduced a suite of Generic Array
Logic (GAL) devices, which provided sophisticated CMOS-based electrically-
erasable (E 2) variations on the PAL concept.

 The advantage of PALs and GALs (as compared to PLAs) is that they are faster
because only one of their arrays is programmable. On the downside, PALs and GALs
are more limited because they only allow a restricted number of product terms to
be “OR-ed ” together (but engineers are cunning fellows, and we have lots of tricks
up our sleeves that—to a large extent—allow us to get around this sort of thing).

 ADDITIONAL PROGRAMMABLE OPTIONS
 The programmable device examples shown in the previous topics were small
and rudimentary for the purposes of simplicity. In addition to being a lot larger
(having more inputs, outputs, and internal signals), real devices can offer a
variety of additional programmable options, such as the ability to invert the
outputs and/or have tri-statable outputs.

 Furthermore, some devices support registered and/or latched outputs (with
associated programmable multiplexers that allow the user to specify whether to
use the registered or nonregistered version of the output on a pin-by-pin basis).
And some devices provide the ability to confi gure certain pins to act as either
outputs or additional inputs. The list of options goes on …

 The problem here is that different devices may provide different subsets of the
various options, which makes selecting the optimum device for a particular
application something of a challenge. Engineers typically work around this by
(a) restricting themselves to a limited selection of devices and then tailoring their
designs to these devices, or (b) using a software program to help them decide
which devices best fi t their requirements on an application-by-application basis.

 INTRODUCING CPLDS
 The one truism in electronics is that everyone is always looking for things to get
bigger (in terms of functional capability), smaller (in terms of physical size),
faster, more powerful, and cheaper—surely that’s not too much to ask, is it?
Thus, the tail end of the 1970s and the early 1980s began to see the emergence
of more sophisticated PLD devices. In order to distinguish these little scamps
from their less-sophisticated ancestors (which still fi nd use to this day), these
new devices were referred to as Complex PLDs (CPLDs). Perhaps not surpris-
ingly, it subsequently became common practice to refer to the original, less-
pretentious versions as Simple PLDs (SPLDs).

Programmable ICs CHAPTER 16 225

 Just to make life more confusing, some people understand the terms PLD
and SPLD to be synonymous, while others regard PLD as being a superset
that encompasses both SPLDs and CPLDs (unless otherwise noted, we shall
embrace this latter interpretation; Figure 16.15).

PLDs

SPLDs CPLDs

PLAsPROMs PALs GALs etc.

FIGURE 16.15
 The introduction of CPLDs.

 Leading the fray were the inventors of the original PAL devices—the guys and
gals at Monolithic Memories Inc. (MMI)—who introduced a component they
called a MegaPAL. This was an 84-pin device that essentially comprised four
standard PALs with some interconnect linking them together. Unfortunately, the
MegaPAL consumed a disproportionate amount of power and it was generally
perceived to offer little advantage compared to using four individual devices.

 The big leap forward occurred in 1984, when newly formed Altera Corporation
introduced a CPLD based on a combination of CMOS and EPROM technolo-
gies. Using CMOS allowed Altera to achieve tremendous functional density and
complexity while consuming relatively little power. And basing the program-
mability of these devices on EPROM cells made them ideal for use in develop-
ment and prototyping environments.

 Having said this, Altera’s claim to fame wasn’t due only to the combination of
CMOS and EPROM. When engineers started to grow SPLD architectures into
larger devices like the MegaPAL, it was originally assumed that the central inter-
connect array (also known as the programmable interconnect matrix) linking the
individual SPLD blocks required 100% connectivity to the inputs and outputs
associated with each block. The problem was that a 2x increase in the size of
the SPLD blocks (equating to 2x the inputs and 2x the outputs) resulted in a
4x increase in the size of the interconnect array. In turn, this resulted in a huge
decrease in speed coupled with higher power dissipation and component costs.

SECTION 2 Components and Processes226

 Altera made the conceptual leap to using a central interconnect array with less
than 100% connectivity (see the discussions associated with Figure 16.17 for a
tad more information on this concept). This increased the complexity of the soft-
ware design tools, but it kept the speed, power, and cost of these devices scalable.

 Although every CPLD manufacturer fi elds its own unique architecture, a generic
device might consist of a number of SPLD macrocell blocks (typically PALs)
sharing a common programmable interconnection matrix (Figure 16.16). As
opposed to SPLD macrocell blocks, some modern CPLDs are based on Look-Up
Tables (LUTs), which we’ll discuss in more detail when we come to consider
Field Programmable Gate Arrays (FPGAs).

SPLD-like
blocksInput/output pins

Programmable
interconnect

matrix

FIGURE 16.16
 A generic CPLD structure.

 In addition to programming the individual SPLD blocks, the connections between
the blocks can be programmed using the programmable interconnect matrix.

 Of course, Figure 16.16 is an abstract representation. In reality, all of these struc-
tures are formed on the same piece of silicon, and there are a variety of addi-
tional features not shown here. For example, the programmable interconnect
matrix may contain a lot of wires (say 100), but this is more than can be handled
by the individual SPLD blocks, which might only be able to accommodate a lim-
ited number of signals (say 30). Thus, the SPLD blocks are interfaced to the inter-
connect matrix using some form of programmable multiplexer (Figure 16.17).

 Depending on the manufacturer and the device family, the CPLD’s program-
mable switches may be based on EPROM, E 2PROM, FLASH, or SRAM cells.
In the case of SRAM-based devices, some variants increase their versatility by
allowing the SRAM cells associated with each SPLD block to be used either as
programmable switches or as an actual chunk of memory.

Programmable ICs CHAPTER 16 227

 CPLDs fi nd use in a wide range of applications. Flash-based versions are particu-
larly useful in the case of portable (handheld) products, which require low power
consumption, small packages, and low price. Many CPLDs support multiple
banks of confi gurable input/output (I/O) pins, where different banks can be pro-
grammed to use a variety of I/O standards and voltages. Thus, one use for CPLDs is
to act as an interface between other components that use different I/O standards.

 Sometimes a system’s application processor might be limited in the number of
I/O pins it supports. In this case, a CPLD can be used in a pin-expansion role;
the application processor “ talks ” to the CPLD, which in turn “ talks ” to a num-
ber of other devices. Another use is to off-load system tasks from the power-
hungry application processor to a power-frugal CPLD.

 INTRODUCING FPGAS
 Around the beginning of the 1980s, it became apparent that there was a “ gap ”
in the digital integrated circuit continuum (Figure 16.18). On the one hand
there were programmable devices like SPLDs and CPLDs, which were highly
confi gurable and had fast design and modifi cation times, but which couldn’t
support large or complex functions. At the other end of the spectrum were
ASICs (these devices are presented in more detail in Chapter 17: Application-
Specifi c Integrated Circuits (ASICs)).

 As we shall see, ASICs can support extremely large and complex functions,
but they are expensive and time-consuming to design. Furthermore, once a
design is implemented as an ASIC, it’s effectively “frozen in silicon. ” In order
to address this gap (Figure 16.19), in 1984 a company called Xilinx introduced
a new class of integrated circuit to the market; this new component was called
a Field Programmable Gate Array (FPGA).

100 wires

30 wires

Programmable
multiplexer

FIGURE 16.17
 Using programmable multiplexers.

SECTION 2 Components and Processes228

 One way to visualize an FPGA is as a large number of programmable logic
block “islands” surrounded by a “sea” of programmable interconnects, as illus-
trated in Figure 16.20 . Only a few logic blocks are shown here, but a modern
device can contain hundreds of thousands of such blocks. As we’ll see in the
next topic, each of the logic blocks can be confi gured (programmed) to per-
form a specifi c function. Furthermore, the interconnect can be confi gured to
connect the inputs and outputs of the various logic blocks together as required.

 As usual, this high-level illustration is merely an abstract representation; in real-
ity, all of the logic and interconnect would be implemented on the same piece
of silicon using standard integrated circuit creation techniques. In addition to
the local interconnect shown in Figure 16.20 , there would also be global (high-
speed) interconnection paths that can transport signals across the chip without
having to go through multiple local switching elements.

PLDs

SPLDs CPLDs FPGAs

PLAsPROMs PALs GALs etc.

FIGURE 16.19
 FPGAs join the PLD fraternity.

PLDs

SPLDs

CPLDs

*Not available circa early 1980s

The
GAP

Gate arrays

Structured ASICs*

Standard cell

Full custom

ASICs

FIGURE 16.18
 The gap between PLDs and ASICs.

Programmable ICs CHAPTER 16 229

 The device will also include primary input/output (I/O) pins and pads (not
shown here). By means of its confi guration cells, the interconnect can be pro-
grammed so that the primary inputs to the device are connected to the inputs
of one or more programmable logic blocks, and the outputs from any logic
block can be used to drive the inputs to any other logic block and/or the pri-
mary outputs from the device.

 The end result is that FPGAs successfully bridge the gap between PLDs and
ASICs. On the one hand, they are highly confi gurable and have the fast design
and modifi cation times associated with PLDs. On the other hand, they can
be used to implement large and complex functions that had previously been
achievable only using ASICs.

 ALTERNATIVE FPGA ARCHITECTURES
 Now, sit down and take a deep breath, because in a moment I’m going to use
a scary word: “ fabric. ” 10 In the context of a silicon chip, this is used to refer to
the underlying structure of the device (sort of like the phrase “ The fabric of civi-
lized society … ”). When you fi rst hear someone using fabric in this way, it might
sound a little “ snooty ” or pretentious. Truth to tell, however, once you get used
to it, you’ll fi nd that this can be a jolly useful word.

Programmable
interconnect

Programmable
logic blocks

FIGURE 16.20
 One way to visualize a generic FPGA architecture.

 10 On the off-chance you were wondering, the word fabric comes from the Middle English
fabryke , meaning “ something constructed. ”

SECTION 2 Components and Processes230

 With regard to the logic blocks that we saw in Figure 16.20 , there are a number
of ways in which these may be implemented. One possibility is to use a multi-
plexer (MUX) approach. As an example, consider one way in which the 3-input
function y � (a & b) | c could be implemented using a block containing only
multiplexers (Figure 16.21). (Note that in a real device, each logic block would
contain additional components such as one or more registers.)

 The device can be confi gured (programmed) such that each input to the block
is presented with a logic 0, a logic 1, or the true or inverse version of a signal
(“a , ” “b , ” or “c ” in this case) coming from another block or from a primary
input to the device. This allows each block to be confi gured in myriad ways to
implement a plethora of possible functions. (The “?” shown on the input to
the central multiplexer in Figure 16.21 indicates that we don’t care whether this
input is connected to a 0 or a 1.)

 Although some folks really like MUX-based FPGAs, the vast majority of today’s
FPGA fabrics are based on a Look-Up Table (LUT) architecture as illustrated in
Figure 16.22 . (Once again, in the real world, each logic block would contain
additional components such as registers, by-pass multiplexers, and such-like.)

0

1

0

1

0

1

MUX

MUX

MUX

0

b

a

1

?

0

y

0

1

MUX0

1

c

&

a

b

c

AND

OR

y � (a & b) | c

y
|

FIGURE 16.21
 MUX-based logic blocks.

Programmable ICs CHAPTER 16 231

 The underlying concept behind a LUT is relatively simple. The input signals to
the block are used as an index (pointer) into a lookup table. The FPGA is con-
fi gured (programmed) so that the cell pointed to by each input combination
contains the desired output value.

 The fi rst FPGAs used 3-input LUTs. After a couple of years, 4-input LUTs
became standard, and this persisted until around 2006. At the time of this writ-
ing, the smaller FPGA families still use 4-input LUTs, but the really high-end
devices may use 6- or 8-input LUTs. (These big-boys may be used as a single
large LUT or split into smaller versions such as two 4-input LUTS, or a 3-input
and a 5-input LUT.)

 In addition to their underlying programmable fabric, different FPGAs will con-
tain different combinations of hard macro blocks, including blocks of on-chip
RAM, adders, multipliers, Digital Signal Processing (DSP) functions, processor
cores, and so forth. 11 (Actually, relatively few FPGAs support processor cores in

a

b y

c

&

a

b

c

AND

OR

y � (a & b) | c

y
|

0

0

1

1

b

LUT

0

0

0

0

a

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

1

0

1

0

1

1

1

c y

FIGURE 16.22
 LUT-based logic blocks.

 11 For example, a recently introduced FPGA at the time of this writing offers 680K logic
blocks, 22.4 megabits of internal RAM, and 1360 18 � 18 multipliers.

SECTION 2 Components and Processes232

the form of dedicated hard macro blocks; in most cases, we use one or more
soft cores by confi guring a portion of the programmable fabric to function as a
microprocessor or microcontroller.)

 High-end FPGAs can contain hundreds or thousands of input/output (I/O) pins.
These pins are arranged in multiple banks, and each bank can be confi gured (pro-
grammed) to use variety of I/O standards and voltages. Also, FPGAs may contain
hard-macro serial-gigabit transceiver blocks that support high-speed chip-to-chip
communication using a variety of standards like Fibre Channel, Infi niBand®, PCI
Express®, RapidIO™, SkyRail™, and 10-gigabit Ethernet.

 ALTERNATIVE FPGA CONFIGURATION
TECHNOLOGIES
 Some FPGAs are confi gured using antifuse technology; others are programmed
using FLASH confi guration cells. Antifuse-based devices are programmed outside
of the system in which they will ultimately reside; FLASH-based devices may
be programmed outside or inside the system [in this latter case they are said to
be In-System Programmable (ISP)]. Two big advantages of antifuse and FLASH-
based fabrics are their relatively low power consumption and their nonvolatile
nature, which provides “instant-on” capability.

 The majority of FPGAs are based on SRAM confi guration cells, which allows
them to be quickly and easily reprogrammed. In addition to their versa-
tility, a big advantage of these devices is the fact that they use only standard
CMOS processes, which means they can ride the current latest and greatest
technology wave. The main disadvantages are that they consume a lot of power
(relative to their antifuse and FLASH cousins) and that they require an exter-
nal confi guration device (this is typically presented in the form of a FLASH
memory chip).

 Some FPGAs use a hybrid combination of SRAM and FLASH on the same
chip. 12 Each programmable element in the device has an associated FLASH
bit and an SRAM cell. The idea here is that when the device powers up, the
contents of each FLASH bit are copied into its corresponding SRAM cell.
Such a device is essentially “instant on, ” but it can also be easily reprogrammed
as required. Furthermore, once the device has been powered-up and is
running under its initial confi guration, the chip can continue running while its

 12 One family combines an SRAM-based FPGA die with a FLASH memory die in a single
package.

Programmable ICs CHAPTER 16 233

FLASH is reprogrammed with a new confi guration. This new confi guration can
subsequently be copied over into the SRAM confi guration cells in a fraction
of a second.

 MIXED-SIGNAL FPGAS, CSSPS, AND . . .
 In addition to their digital fabric, some FPGAs also include confi gurable ana-
log functions, such as analog inputs and outputs, analog-to-digital and digital-
to-analog converters, operational amplifi ers, and so forth. This combination
of digital and analog functionality is referred to as mixed-signal. Of particular
interest is the fact that you can confi gure a part of the digital fabric to act as a
soft microprocessor core, and then program this core to monitor the analog
signals and to reconfi gure (“ fi ne tune ”) the analog functions on-the-fl y.

 Another class of components called Customer-Specifi c Standard Products (CSSPs)
combine traditional FPGA programmable fabric with collections of hard macros.
These hard macros include functions that can interface to different types of exter-
nal memory devices, provide various communications functions, the ability to
drive display devices, and so forth.

 In Chapter 17: Application-Specifi c Integrated Circuits (ASICs), we will introduce the
concept of a System-on-Chip (SoC), which is generally regarded to be an ASIC that
includes one or more processor cores, memory, and other functions on a single
chip. Actually, when you come to think about it, an FPGA is really an ASIC that
has been constructed in such a way as to be confi gurable. On this basis, some
folks would refer to an FPGA containing memory whose fabric has been confi g-
ured to implement a processor core and other functions as being an SoC. Other
folks would prefer to use the term System-on-a-Programmable-Chip (SoPC). Of
course, all of this is just playing with words; this is one of those times when “ you
pays your money and you makes your choice, ” as the old saying goes.

 SUMMARY
 The problem with programmable logic devices in the form of SPLDs, CPLDs,
and FPGAs is that there are exceptions to every rule. There is a baffl ing and
bewildering mixture of architectures and confi guration technologies, so the
best we can hope for here is to provide a very general overview.

 In the case of the underlying programmable fabric, we have three main
types: Macrocell (AND-OR or similar arrays), MUX-based, or LUT-based (see
 Table 16.1).

SECTION 2 Components and Processes234

 Similarly, in the case of the various confi guration (programming) technologies,
the best we can hope for is to illustrate which technologies are predominantly
associated with which type of components while remembering that there are
all sorts of oddball devices roaming the world (see Table 16.2).

 Device types versus programmable fabrics

 Device Type Underlying Fabric

 Macrocell MUX LUT

 SPLD Yes No No

 CPLD Some Some Some

 FPGA No Some Most

Table 16.1

 Device types versus confi guration technologies

 Confi guration Technology Symbol Predominantly associated with …

 Fusible-link SPLDs

 Antifuse Some FPGAs

 EPROM

 SPLDs and CPLDs

 E 2 PROM/FLASH

 SPLDs and CPLDs, some FPGAs

 SRAM

SRAM

 Most FPGAs, some CPLDs

 Hybrid SRAM/Flash

SRAM�

 Some FPGAs

Table 16.2

235

 INTRODUCING ASICS
 As its name might suggest, an Application-Specifi c Integrated Circuit (ASIC) is a
device whose function is determined by design engineers to satisfy the require-
ments of a particular application.

 In 1967, Fairchild Semiconductor introduced a device called the Micromosaic ,
which contained a few hundred transistors. The key feature of the Micromosaic
was that the transistors were not initially connected together. Design engineers
used a computer program to specify the function they wished the device to per-
form. This program determined the necessary interconnections required to
link the transistors and generated the masks required to complete the device.
Although relatively simple, the Micromosaic is credited as being the forerunner of
the modern ASIC and the fi rst real application of Computer-Aided Design (CAD).

 A formal classifi cation of ASICs tends to become a bit fl uffy around the edges.
However, it is generally accepted that there are four major categories of these
little rapscallions: Gate Array (GA) devices (including sea-of-gates), Structured
ASICs, Standard Cell (SC) components, and Full Custom parts (Figure 17.1).

 CHAPTER 17 CHAPTER 17

 Application-Specifi c
Integrated Circuits (ASICs)

ASICs

Structured
ASICs

Gate
arrays

Standard
cell

Full
custom

Increasing complexity

FIGURE 17.1
 The four main ASIC categories.

SECTION 2 Components and Processes236

In the following topics we will consider these devices in the order in which
they appeared on the scene.

 FULL CUSTOM DEVICES
 In the early days of digital integrated circuits, there were really only two main
classes of devices (excluding memory chips and simple programmable logic
devices). The fi rst were relatively simple building-block-type components that
were created by companies like TI and Fairchild and sold as standard off-the-
shelf parts to anyone who wanted to use them. The second were full-custom
ASICs like microprocessors, which were designed and built to order for use by
a specifi c company.

 In the case of full custom devices, the design engineers have complete control
over every mask layer used to fabricate the silicon chip. The ASIC vendor does
not prefabricate any components on the silicon and does not provide any cell
libraries. With the aid of appropriate design tools, engineers can “handcraft”
the dimensions of individual transistors, and then create higher-level logic
functions based on these components. For example, if the engineers require a
slightly faster logic gate, they can alter the dimensions of the transistors used to
build that gate. The design tools used for full custom devices are often created
in-house.

 Full custom devices may also include analog circuitry such as comparators,
amplifi ers, fi lters, and digital-to-analog and analog-to-digital converters. The
design of full custom devices is highly complex and time consuming, but the
resulting chips contain the maximum amount of logic that consumes the mini-
mum amount of power with minimal waste of silicon real estate.

 GATE ARRAYS
 A silicon chip may be considered to consist of two major facets: the compo-
nents such as transistors and resistors and the tracks connecting the compo-
nents together. In the case of gate arrays, the ASIC vendor prefabricates wafers
of silicon chips containing unconnected transistors and resistors. 1 Gate arrays
are based on the concept of a basic cell, which consists of a selection of com-
ponents; each ASIC vendor determines the numbers and types of components
provided in their particular basic cell (Figure 17.2).

 1 In the early days, gate arrays were also known as Uncommitted Logic Arrays (ULAs), but this
term has largely fallen into disuse.

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 237

 The fi rst types of gate arrays were called channeled gate arrays. In this case, the
basic cells were typically presented as either single-column or dual-column
arrays, where the free areas between the arrays were known as the channels
(Figure 17.3). (Note that, although these diagrams feature individual silicon
chips, at this stage in the process these chips would still be embedded in the
middle of a wafer.)

 By comparison, in the case of channel-less or channel-free devices, the basic cells
are presented as a single large array. The surface of the device is covered in a

Pure CMOS basic cell BiCMOS basic cell

FIGURE 17.2
Examples of gate array basic cells.

(a) Single-column arrays

Arrays of
basic cells

Channels

Input/output
cells and

pads

(b) Dual-column arrays

Channels

Arrays of
basic cells

Input/output
cells and

pads

FIGURE 17.3
Channeled gate arrays.

SECTION 2 Components and Processes238

 “ sea” of basic cells, and there are no dedicated
channels for the interconnections. Thus, these
devices are popularly referred to as sea-of-gates
or sea-of-cells (Figure 17.4).

 The channels in channeled devices are used for
the tracks that connect the logic gates together.
By comparison, in channel-less devices, the con-
nections between logic gates have to be depos-
ited over the top of other basic cells. In the case
of early processes based on only two layers of
metallization, any basic cell overlaid by a track

was no longer available to the user. More recent processes, which can have up
to eight or ten metallization layers, overcome this problem.

 HIGH-LEVEL VIEW OF THE GATE ARRAY
DESIGN FLOW
 ASIC design fl ows are discussed in more detail in Section 3: Design Tools and Stuff,
but providing a brief, high-level overview here will make things a lot clearer.

 Although the transistors from one or more basic cells can theoretically be con-
nected together to implement practically any digital function, design engineers
using gate arrays do not work at the transistor level. Instead, each ASIC vendor
selects a set of logic functions such as primitive gates, multiplexers, and regis-
ters that they wish to make available to the engineers. The vendor also deter-
mines how each of these functions can be implemented using the transistors
from one or more basic cells.

 A primitive logic gate may only require the transistors from a single basic cell,
while a more complex function like a D-type fl ip-fl op or a multiplexer may
require the use of several basic cells. Each of these “building block ” functions
is referred to as a cell—not to be confused with a basic cell—and the set of func-
tions provided by the ASIC vendor are known collectively as the cell library. The
number of functions in a typical cell library can range from 50 to 250 or more.

 Aided by a suite of design tools (design capture, synthesis, simulation, etc.),
design engineers end up with a gate-level netlist. This netlist describes the cells
to be used and the connections that have to be made between them in order
for the gate array to perform its desired function. This netlist is then passed to
the layout portion of the fl ow. First, the place engine or placer assigns the cells
selected by the engineers to basic cells on the silicon (Figure 17.5).

Input/output
cells and

pads

“Sea” of
basic cells

FIGURE 17.4
Channel-less gate
arrays.

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 239

 Next, the route engine or router determines the optimal way to connect the cells
together (these tools operate hand-in-hand and are referred to collectively as
place-and-route). Further tools are used to create the masks required to imple-
ment the fi nal metallization layers. These layers are used to connect the transis-
tors in the basic cells to form logic gates, and to connect the logic gates to form
the complete device.

 Functions in gate-array cell libraries are generally fairly simple, ranging from
primitive logic gates to the level of registers. The ASIC vendor may also provide
libraries of more complex logical elements called hard macros (or macro-cells)
and soft macros (or macro-functions). 2 In the case of gate arrays, the functions
represented by the hard-macros and soft-macros are usually along the lines of
comparators, shift-registers, counters, and adders. Hard macros and soft mac-
ros are both constructed using cells from the cell library. In the case of a hard
macro, the ASIC vendor predetermines how the cells forming the macro will be
assigned to the basic cells and how the connections between the basic cells will

b
a

y

b

r

s qb

q

a
y Circuit

specified by
designer

Gates are
mapped onto
the silicon

Basic cells
(single column
architecture)

AND

RS latch

AND

FIGURE 17.5
 Cells (logic gates and
functions) in the netlist
are mapped onto basic
cells.

 2 The term macro was inherited from the software guys. In software terms, a macro is like a
subroutine. So a single computer instruction (to call the macro) initiates a series of addi-
tional instructions for the computer to perform. Similarly, in hardware terms, a single
macro represents a large number of primitive logic gates.

SECTION 2 Components and Processes240

be realized. By comparison, in the case of a soft macro, the assignment of cells
to basic cells is performed at the same time, and by the same tool, as it is for
the simple cells specifi ed by the design engineers.

 Gate arrays are classed as semi-custom devices. The defi nition of a semi-custom
device is that it has one or more customizable mask layers, but not all the lay-
ers are customizable. Additionally, the design engineers can only utilize the
predefi ned logical functions provided by the ASIC vendor in the cell and macro
libraries. (More recent gate array incarnations may include pre-created hard
macros such as blocks of memory, processor cores, and peripheral functions.
These are not implemented using basic cells; instead, they are fabricated as
custom blocks directly on the chip.)

 The main disadvantages of gate arrays (as compared to other ASIC implementa-
tions) are their somewhat lower density, and their performance. Having said this,
gate arrays often offer a viable approach for relatively low-volume production runs.
Gate arrays “ruled the ASIC roost ” until the introduction of standard cell devices,
which are presented in the next topic. Ever since standard cell components started
to take off, industry observers have been predicting the demise of gate arrays, but
these little scamps continue to hold onto a small niche in the market.

 STANDARD CELL DEVICES
 Standard cell devices bear many similarities to gate arrays. Once again, each
ASIC vendor decides which logic functions they wish to make available to
the design engineers. Some vendors supply both gate array and standard cell
devices, in which case the majority of the logic functions in the cell libraries
will be identical and the main differences will be in their timing attributes.

 Standard cell vendors also supply hard macro and soft macro libraries, which
include elements such as processors, controllers, and communication func-
tions. Additionally, these macro libraries typically include a selection of RAM
and ROM functions, which were implemented ineffi ciently in early gate array
devices. Last but not least, the design engineers may decide to reuse previously
designed functions and/or to purchase blocks of Intellectual Property (IP).

 There are several different fl avors of intellectual property. In the generic sense, if
you have a capriciously cunning idea, then that idea is your intellectual property
and no one else can use it unless they pay you for it. When a team of electron-
ics engineers is tasked with designing a complex integrated circuit, rather than
“reinventing the wheel, ” they may decide to purchase the plans for one or more

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 241

functional blocks that have already been created by someone else. The plans for
these functional blocks are known as Intellectual Property (IP). IP blocks can range
all the way up to sophisticated communications functions and microprocessors.
The more complex functions (like microprocessors) may be referred to as cores .

 HIGH-LEVEL VIEW OF THE STANDARD CELL
DESIGN FLOW
 Once again, aided by a suite of design tools, the design engineers determine
which elements they wish to use from the cell and macro libraries, and how
they require these elements to be connected together. Unlike gate arrays, how-
ever, standard cell devices do not use the concept of a basic cell, and no com-
ponents are prefabricated on the silicon chip. The ASIC vendor creates custom
masks for every stage of the device’s fabrication. This allows each logic func-
tion to be created using the minimum number of transistors required to imple-
ment that function with no redundant components. Additionally, the cells and
macro functions can be located anywhere on the chip, there are no dedicated
interconnection areas, and the functions are placed so as to facilitate any con-
nections made between them. Standard cell devices therefore provide a closer-
to-optimal utilization of the silicon than do gate arrays (Figure 17.6).

 1T VERSUS 6T SRAM
 The vast majority of ASICs include some amount of memory. By 2008, 50%
or more of the silicon might be consumed by memory in certain devices; and
some folks believe that memory will account for 95% or more of a large pro-
portion of designs by 2016.

Input/output cells and pads

Hard macros,
soft macros, and
simple cells

FIGURE 17.6
Logic functions can be placed anywhere on a standard cell device.

SECTION 2 Components and Processes242

 So, what’s the big deal? Well, if you use standard 6T SRAM (that’s SRAM in
which each memory cell is formed from six transistors), this certainly provides
the speed you need, but it takes a relatively large amount of space and con-
sumes a relatively large amount of power.

 The alternative is to use something called 1T SRAM, in which each cell is imple-
mented using a single transistor. But isn’t this DRAM? Well, yes and no. It’s cer-
tainly true to say that if we look under the hood this looks very much like DRAM
on a single-cell basis. As we know from Chapter 15: Memory ICs, a DRAM cell is
signifi cantly smaller than its SRAM equivalent, and it consumes less power, but
it’s also signifi cantly slower. However, as we also know from Chapter 15, in the
case of Synchronous DRAM (SDRAM), we can arrange banks of DRAM in such
a way as to increase the speed of the memory subsystem as a whole.

 Similarly, the way in which a block of 1T SRAM is arranged (with its own inter-
nal refresh circuitry and interface circuitry and suchlike) means that it actually
appears to be a block of (very dense) high-speed SRAM to the outside world
(the rest of your design). Until recently, this form of memory required extra
process steps to augment the underlying CMOS process, but modern forms can
be implemented using standard CMOS technology.

 STRUCTURED ASICS
 The concept of “Structured ASICs ” (although they weren’t called that at the
time) spluttered into life around the beginning of the 1990s, slouched around
for a while, and then returned to the nether regions from whence it came. A
decade later—circa 2001 to 2002—a number of ASIC manufacturers started
to investigate innovative ways of reducing ASIC design costs and development
times. Not wishing to be associated with traditional gate arrays, everyone was
happy when someone came up with the “Structured ASIC ” moniker some-
where around the middle of 2003.

 As usual, of course, every vendor has their own proprietary architecture, so our
discussions here will provide only a generic view of these components. Each
device commences with a fundamental element that is called a module by
some and a tile by others. This element may contain a mixture of prefabricated
generic logic (implemented either as gates, multiplexers, or as a lookup table),
one or more registers, and possibly a little local RAM (Figure 17.7).

 An array (sea) of these elements is then prefabricated across the face of the
chip. Alternatively, some fabrics commence with a base cell (or base tile or base

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 243

module or …) containing only generic logic in the form of prefabricated gates,
multiplexers, and/or lookup tables. In conjunction with some special units
containing registers, small memory elements, and other logic, an array of these
base units (say 4 � 4, 8 � 8, or 16 � 16) then make up a master cell (or master
tile or master module or …). Once again, an array (sea) of these master units is
then prefabricated across the face of the chip.

 Also prefabricated are functions like RAM blocks, clock generators, boundary
scan logic, and so forth (Figure 17.8).

 The idea is that the device can be customized using only the metallization layers
(just like a standard gate array). The difference is that—due to the higher level
of sophistication of the structured ASIC tile—the majority of the metallization

LUT

LUT

(a) Gate, mux, and flop-based (b) LUT and flop-based

FIGURE 17.7
Examples of simple structured ASIC tiles.

Prefabricated I/O,
cores, etc.

Embedded RAM

Sea-of-tiles

FIGURE 17.8
A generic structured ASIC architecture.

SECTION 2 Components and Processes244

layers are also predefi ned. Thus, many structured ASIC architectures require the
customization of only two or three metallization layers (in one case, it is necessary
to customize only a single via layer). This dramatically reduces the time and costs
associated with creating the remaining photo-masks used to complete the device.

 Although it’s diffi cult to assign an exact value, the predefi ned and prefabricated
logic associated with structured ASICs results in an overhead compared to stan-
dard cell devices in terms of power consumption, performance, and silicon real
estate.

 So what are the advantages with regard to structured ASICs? Well, although
structured ASICs can’t attain the high performance and low power consump-
tion of full-blown ASICs, they come reasonably close. But the real advantages
of structured ASICs are reduced design time, effort, and cost (for medium-size
production runs). This is because the majority of the layers forming the device
(silicon, polysilicon, and metallization) are prefabricated. All that is required is
to customize relatively few of the metallization layers to complete the device.
This signifi cantly reduces its cost (the development expenses associated with the
underlying fabric can be amortized across all of the end users) and also dramati-
cally reduces the time required to get working prototypes back from the foundry.

 Furthermore, the act of designing structured ASICs is much simpler than for
a full-blown ASIC, because the majority of the signal integrity, power grid,
and clock-tree distribution issues have already been addressed by the struc-
tured ASIC vendor. This means that the design team doesn’t require extreme
amounts of expertise in these areas, and also that they don’t have to spend
huge amounts of money on the incredibly sophisticated analysis tools that are
a prominent feature in full-blown ASIC design fl ows.

 Now, one point to consider is that a lot of structured ASIC fabrics are based on
proprietary cells (logic functions). This means that when a foundry introduces a
new technology node, these cells have to be re-implemented from the ground up,
which is expensive and—more importantly—time-consuming. In order to address
this issue, some structured ASIC vendors base their fabric on cells from the found-
ry’s standard libraries. Using these library cells allows the structured ASIC vendor
to dramatically increase the availability of its offering (and reduce risk) by lever-
age all of the work performed by the foundry in qualifying the new process.

 Last but not least, at least one structured ASIC is based on the concept of stan-
dard metal. The idea here is that all of the tracks on the device are pre-created

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 245

in the form of track segments. All that is required is for the customization of
one or two via layers to make the required connections between different track
segments. The advantage of this approach is that all of the tracks can be pre-
characterized in terms of their capacitance, resistance, inductance, signal delays,
and so forth; also that the vast majority of signal integrity issues have already
been resolved by the vendor.

 INPUT/OUTPUT (I/O) CELLS AND PADS
 Around the periphery of the silicon chip are power and signal pads, used to
interface the device to the outside world. The cell-library data books for gate
array and standard cell devices include a set of functions known as Input/Output
(I/O) cells. The signal pads contain a selection of transistors, resistors, and
diodes necessary to implement input, output, or bidirectional buffers, and the
design engineers can decide how each pad will be confi gured. The masks and
metallization used to interconnect the internal logic are also used to confi gure
the components in the input/output cells and to connect the internal logic to
these cells (Figure 17.9).

 The ASIC vendor may permit the design engineers to individually specify
whether each input/output cell should present CMOS, TTL, or ECL character-
istics to the outside world. The input/output cells also contain any circuitry
required to provide protection against Electrostatic Discharge (ESD). After the

Configured as
bidirectional

buffer

Configured
as input
buffer

Configured
as output

buffer

PadCell

FIGURE 17.9
 Input/Output (I/O) cells
and pads.

SECTION 2 Components and Processes246

metallization layers have been added, the chips are separated and packaged
using the same techniques as for standard integrated circuits. 3

 ASICS VERSUS ASSPS
 Generally speaking, an Application-Specifi c Integrated Circuit (ASIC) is a compo-
nent that is designed by and/or used by a single company in a specifi c system.
By comparison, an Application-Specifi c Standard Product (ASSP) is a more gen-
eral-purpose device that is created using ASIC tools and technologies, but that is
intended for use by multiple system design houses. Meanwhile, a System-on-Chip
(SoC) is an ASIC or ASSP that acts as an entire subsystem including a micropro-
cessor or microcontroller, memory, peripherals, custom logic, and so forth.

 WHO ARE ALL THE PLAYERS?
 It can be useful to have a high-level view as to who all of the players are in this
complicated game (understanding the technology is the easy part; it’s when
you try to work out who does what to whom that things start to get hairy).

 First of all, we have the folks who create the tools (software programs) that
the engineers use to design integrated circuits, circuit boards, and electronic
systems. For historical reasons, the tools used to capture and verify a design
(either an integrated circuit or a circuit board) were classed as Computer-Aided
Engineering (CAE). By comparison, the layout (place-and-route) tools used to
actually implement the design were classed as Computer-Aided Design (CAD).
Sometime during the 1980s, all of the CAE and CAD tools came to be referred
to by the “umbrella” name of Electronic Design Automation (EDA), and everyone
was happy (apart from the ones who weren’t, but they don’t count).

 If you say things the wrong way when talking to someone in the industry,
you immediately brand yourself as an outsider (one of “them” instead of one
of “us”). For historical reasons that are based on the origins of the terms CAE
and CAD, the term design engineer or simply engineer is typically used to refer to
someone who conceives and describes the functionality of an integrated circuit,
printed circuit board, or electronic system (what it does and how it does it). By
comparison, the term layout designer or simply designer is typically used to refer to
someone who lays out a circuit board or integrated circuit (determines the loca-
tions of the components and the routes of the tracks connecting them together).

 3 See Chapters 14: Integrated Circuits (ICs) and 20: Advanced Packaging Techniques, for more
discussions on integrated circuit packaging technologies.

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 247

 Now, this is where things start to get interesting. Let’s start with the System
House A block in the middle of Figure 17.10 . These are the folks who design
and build the system-level products (from cell phones to televisions to com-
puters) that eventually wend their way into our hands.

 When these system house folks are creating a new product, they may decide it
requires one or more ASICs, which they also design. Once they’ve created the
design for an ASIC, they may pass it over to an ASIC vendor to be implemented
and fabricated. In this case, the ASIC vendor is in charge of creating the masks
and constructing and packaging the fi nal devices.

 As opposed to a full-line ASIC vendor, a fabless semiconductor company is one
that designs and sells integrated circuits, but does not have the ability to manu-
facture them. By comparison, a foundry is a company that manufactures inte-
grated circuits, but doesn’t actually do any designs of their own (these are also
known as fabs because they fabricate the integrated circuits).

 Initially, we described a system house (represented as System House A in Figure
17.10) as passing its ASIC designs over to an ASIC vendor for implementation
and fabrication. However, some system houses (represented as System House B
in Figure 17.10) perform both the design and implementation, and then hand
the masks over to a foundry for fabrication. In yet another scenario, a system
house (represented as System House C in Figure 17.10) may have its own fab
capability, in which case it will perform the entire process—design, implemen-
tation, and fabrication— “in-house. ”

 And just to confuse the issue even further, we have Integrated Device
Manufacturers (IDMs). These are companies that are very similar to system
houses, except that IDMs focus on designing, manufacturing, and selling inte-
grated circuits as opposed to complete electronic systems.

Implementation

Design

Fabrication

Fabless
semi.

Foundry
(fab)

System
House A

System
House B

ASIC
vendor

System
House C

IDM

FIGURE 17.10
Some of the key
players.

SECTION 2 Components and Processes248

 SUMMARY
 Electronic designs typically contain a selection of highly complex functions—
such as processors, controllers, and memory—interfaced to each other by a
plethora of simple functions such as primitive logic gates. The simple interfac-
ing functions are often referred to as the glue logic because they “glue” every-
thing together.

 Both simple and complex functions may be available as standard, off-the-shelf
integrated circuits. Devices containing small numbers of simple logic functions
(for example, four 2-input AND gates) are sometimes referred to as jelly bean
parts. When glue logic is implemented using jelly bean parts, these components
may require a disproportionate amount of the circuit board’s real estate. A few
complex devices containing the vast majority of the design’s logic gates may
occupy a small area, while a large number of jelly bean devices containing rela-
tively few logic gates can occupy the bulk of the board’s surface.

 Early ASICs contained only a few hundred logic gates. These were mainly used
to implement glue logic, and it was possible to replace fi fty or more jellybean
devices with a single ASIC. This greatly reduced the size of circuit boards,
increased speed and reliability, and reduced power consumption. As time pro-
gressed, application-specifi c devices with tens or hundreds of millions of gates
and thousands of pins became available. Thus, today’s ASICs can be used to
implement the most complex functions.

 Both gate array and standard cell devices essentially consist of building blocks
designed and characterized by the manufacturer and connected together by the
designer. Gate arrays are mask-programmable with a predefi ned number of tran-
sistors, and different designs are essentially just changes in the interconnect. This
means that gate arrays require the customization of fewer layers than standard
cell devices. Gate arrays are therefore faster to implement than their standard
cell equivalents, but the latter can contain signifi cantly more logic gates.

 In certain respects, gate arrays have moved toward having similar capabilities
to those of standard cells, and some support complex functions such as mem-
ory and processor cores. The design engineers generally know the memory and
processing requirements in advance of the rest of the logic, and the gate array
manufacturer may supply devices with pre-built processor and memory func-
tions surrounded by arrays of basic cells. Some gate array devices support sim-
ple analog cells in addition to the digital cells, and standard cell devices can be
constructed with complex analog functions, if required.

Application-Specifi c Integrated Circuits (ASICs) CHAPTER 17 249

 Thus far, structured ASICs haven’t really gained the high-level of market pene-
tration many folks anticipated, but it’s getting harder and harder to design full-
blown standard cell ASICs, as timing, power, signal integrity, and other design
considerations become increasingly complex with each new technology node.
Thus, it may be that structured ASICs will leap onto the center stage with gusto
and abandon in the not-so-distant future.

 Last but not least, creating full-custom ASIC devices (like high-end micropro-
cessors from Intel and AMD) is so mind-bogglingly complex as to make one’s
brains leak out of one’s ears, and we don’t want that to happen, so instead let’s
bounce over to Chapter 18: Printed Circuit Boards (PCBs), to see what exciting
topics are waiting to be discovered.

This page intentionally left blank

251

 NOT MUCH FUN
 Electronic components are rarely useful in isolation, and it is usually neces-
sary to connect a number of them together in order to achieve a desired effect.
Early electronic circuits were constructed using discrete (individually packaged)
components such as transistors, resistors, capacitors, and diodes. These were
mounted on a nonconducting board and connected using individual pieces
of insulated copper wire. The thankless task of wiring the boards by hand was
time-consuming, boring, prone to errors, and expensive, and it was generally
agreed that this wasn’t much fun.

 THE FIRST CIRCUIT BOARDS
 The great American inventor Thomas Alva Edison (1847 –1931) had some
ideas about connecting electronic circuits together. In a note to Frank Sprague
(1857 – 1934), founder of Sprague Electric, Edison outlined several concepts for
printing additive traces on an insulating base. He even talked about the pos-
sibility of using conductive inks (it was many decades before this technology—
which is introduced later in this chapter—came to fruition).

 In 1903, Albert Hanson (a Berliner living in London) obtained a British pat-
ent for a number of processes for forming electrical conductors on an insulat-
ing base material. One of these described a technique for cutting or stamping
traces out of copper foil and then sticking them to the base. Hanson also came
up with the idea of double-sided boards and through-holes (which were selec-
tively connected by wires).

 In 1913, Arthur Berry fi led a British patent for covering a substrate with a layer
of copper and selectively etching parts of it away to leave tracks. In another
British patent issued in 1925, Charles Ducas described etching, plating-up, and

 CHAPTER 18 CHAPTER 18

 Printed Circuit Boards
(PCBs)

SECTION 2 Components and Processes252

even multilayer circuit boards (including the means of interconnecting the
layers). For the next few decades, however, it was easier and cheaper to wire
boards manually. The real push into circuit boards only came with the inven-
tion of the transistor and later, with the integrated circuit.

 PCBS AND PWBS
 By the 1950s, the interconnection technology now known as Printed Wire Boards
(PWBs) or Printed Circuit Boards (PCBs) had gained commercial acceptance.
Both terms are synonymous, but the former is more commonly used in America,
while the latter is predominantly used in Europe and Asia. 1 These circuit boards
are often referred to as laminates because they are constructed from thin layers or
sheets. In the case of the simpler boards, an insulating base layer has conducting
tracks formed on one or both sides. The base layer may technically be referred to
as the substrate, but this term is rarely used in the circuit board world. 2

 The original board material was Bakelite, but modern boards are predominantly
made from woven glass fi bers that are bonded together with an epoxy. The
board is cured using a combination of temperature and pressure, which causes
the glass fi bers to melt and bond together, thereby giving the board strength
and rigidity. These materials may also be referred to as organic substrates ,
because epoxies are based on carbon compounds as are living creatures. The
most commonly used board material of this type is known as FR4, where the
fi rst two characters stand for “fl ame retardant, ” and you can count the number
of people who know what the “4” stands for on the fi ngers of one hand.

 To provide a sense of scale, a fairly representative board might be 15 cm � 20 cm in
area and in the region of 1.5 mm to 2.0 mm in thickness, but they can range in size
from 2 cm � 2 cm or smaller (and thinner) to 50 cm � 50 cm or larger (and thicker). 3

 ROHS AND LEAD-FREE SOLDER
 Solders 4 are fusible metal alloys that have relatively low melting points in the
range of 90 to 450° C (200 to 840° F). The reason solders are of interest to us

 1 Having said this, I currently live in America and I don’t recall hearing anyone say “printed
wire board ” for quite some time, so maybe the “printed circuit board ” appellation has won
the day.
 2 See also the glossary defi nition of substrate .
 3 These dimensions are not intended to imply that circuit boards must be square or even
rectangular. In fact, a circuit board may be constructed with whatever outline is necessary to
meet the requirements of a particular enclosure: for example, the shape of a car dashboard.
 4 The word solder comes (in a roundabout route from Middle English via Old French) from
the Latin solidare , meaning “to make solid. ”

Printed Circuit Boards (PCBs) CHAPTER 18 253

here is they are used to attach electronic components to circuit boards in a pro-
cess called soldering .

 Until recently, solders used in electronic applications were made from tin-
lead alloys. In 2003, however, the European Union adopted the Restriction of
Hazardous Substances Directive (RoHS). Although many folks think of RoHS
as being “the lead-free directive, ” in actually restricts the use of six hazardous
materials (including lead, mercury, and cadmium) in the manufacture of elec-
tronic and electrical equipment.

 The RoHS Directive led to the development of a variety of lead-free solders that may
contain tin, copper, silver, bismuth, indium, zinc, antimony, and traces of other
metals. Typical solders used for the majority of electronics applications are based
on mixtures of tin-silver-copper with traces of other metals or metallic elements.

 RoHS started to be enforced in Europe in 2006, but some application segments
like military, aerospace, and medical applications have been granted exceptions.
Many other countries around the world are adopting their own RoHS-like regula-
tions. Although full-blown RoHS-type regulation in the United States is considered
to be unlikely at the Federal level in the near- to medium-term, several states have
already enacted legislation that requires electronic equipment manufacturers to
comply with RoHS requirements. Also, anyone who wishes to sell products into the
European Union Markets has to ensure that those products are RoHS compliant.

 SUBTRACTIVE PROCESSES
 In a subtractive process, a thin layer of copper foil in the order of 0.02-mm
thick is bonded to the surface of the board. The copper’s surface is coated with
an organic resist, which is cured in an oven to form an impervious layer (Figure
18.1). (Note that the “ wobbly ” edges in this illustration are intended to imply
that we are considering only a very small area in the middle of the board.)

FR4

ResistCopper

FIGURE 18.1
Subtractive process: Applying resist to copper-clad board.

SECTION 2 Components and Processes254

 Next, an optical mask is created with areas that are either transparent or
opaque to ultraviolet light. The mask is usually the same size as the board, and
can contain hundreds of thousands of fi ne lines and geometric shapes.

 The mask is placed over the surface of the board, which is then exposed to
Ultraviolet (UV) light. This ionizing radiation passes through the transparent
areas of the mask to break down the molecular structure of the resist. After the
board has been exposed, it is bathed in an organic solvent, which dissolves the
degraded resist. Thus, the pattern on the mask has been transferred to a corre-
sponding pattern in the resist (Figure 18.2).

 A process in which ultraviolet light passing through the transparent areas of the
mask causes the resist to be degraded is known as a positive-resist process; negative-
resist processes are also available. 5 The following discussions assume positive-
resist processes, unless otherwise noted.

 After the unwanted resist has been removed, the board is placed in a bath con-
taining a cocktail based on sulfuric acid, which is agitated and aerated to make
it more active. The sulfuric acid dissolves any exposed copper not protected by
the resist in a process known as etching. The board is then washed to remove
the remaining resist. Thus, the pattern in the mask has now been transferred to
a corresponding pattern in the copper (Figure 18.3).

 This type of process is classed as subtractive because the board is fi rst covered
with the conductor and any unwanted material is then removed, or subtracted .

Opaque areas
of the mask

Transparent areas
of the mask

Undegraded
resist

Degraded
resist

removed
exposing the

copper

Ultraviolet radiation

FIGURE 18.2
 Subtractive process:
Degrading the resist
and exposing the
copper.

 5 In a negative-resist process the ultraviolet radiation passing through the transparent areas of
the mask is used to cure the resist. The remaining uncured areas are then removed using
an appropriate solvent. Thus, a mask used in a negative-resist process is the photographic
negative of one used in a positive-resist process to achieve the same effect; that is, the trans-
parent areas are now opaque, and vice versa.

Printed Circuit Boards (PCBs) CHAPTER 18 255

As a point of interest, much of this core technology predates the modern
electronics industry. The process of copper etching was well known by the
printing industry in the 1800s, and opto-lithographic techniques involving
organic resists were used to create printing plates as early as the 1920s. These
existing processes were readily adopted by the fl edgling electronics industry.

 By today’s standards, early printed circuit boards had humongously wide
tracks. As process technologies improved, it became possible to achieve ever-
fi ner features. By 2002, for example, reasonably high-end boards were using
lines and spaces of 5 mils or 4 mils, where one mil is one one-thousandth of
an inch. (In this context, the term lines refers to the widths of the tracks, while
spaces refers to the gaps between adjacent tracks.) At the time of this writing,
in 2008, lines and spaces of 4 and 4 mils or 3 and 3 mils are not uncommon,
while really high-end boards may be as low as 1 and 1 mil.

 ADDITIVE PROCESSES
 An additive process does not involve any copper foil being bonded to the board.
Instead, the coating of organic resist is applied directly to the board’s surface
(Figure 18.4).

Remaining
resist removed

to leave
bare copper

Remaining
copper with
resist on top

Unwanted copper
etched away
down to the

FR4

FIGURE 18.3
 Subtractive process:
Removing the unwanted
copper.

FR4

Resist

FIGURE 18.4
 Additive process:
Applying resist to bare
board.

SECTION 2 Components and Processes256

 A process of this type is classed as additive because the conducting material
is only grown on, or added to, specifi c areas of the board. Additive processes
are increasing in popularity because they require less processing and result in
less wasted material. Additionally, fi ne tracks can be grown more accurately in
additive processes than they can be etched in their subtractive counterparts.

Transparent areas
of the mask

Opaque areas
of the mask

Ultraviolet radiation

Undegraded
resist

FR4

FIGURE 18.5
Additive process:
Degrading the resist
and exposing the FR4.

CopperCopper grown
on FR4

Undegraded resist

Remaining resist
removed to leave

bare FR4

FIGURE 18.6
Additive process:
Adding the desired
copper.

 Once again the resist is cured, an optical mask is created, ultraviolet light is
passed through the mask to break down the resist, and the board is bathed in
an organic solvent to dissolve the degraded resist (Figure 18.5). 6

 After the unwanted resist has been removed, the board is placed in a bath
containing a cocktail based on copper sulfate where it undergoes a process
known as electroless plating. Tiny crystals of copper grow on the exposed areas
of the board to form copper tracks. The board is then washed in an appropriate
solvent to remove the remaining resist (Figure 18.6).

 6 Note that a mask used in an additive process is the photographic negative of one used in a
subtractive process to achieve the same effect; that is, the transparent areas are now opaque,
and vice versa.

Printed Circuit Boards (PCBs) CHAPTER 18 257

These processes are of particular interest for high-speed designs and microwave
applications, in which conductor thicknesses and controlled impedances are
critical. Groups of tracks, individual tracks, or portions of tracks can be built up to
precise thicknesses by iterating the process multiple times with selective masking.

 SINGLE-SIDED BOARDS
 It probably comes as no great surprise to hear that single-sided boards have tracks
on only one side. These tracks, which may be created using either subtrac-
tive or additive processes, are terminated with areas of copper known as pads.
The shape of the pads and other features are, to some extent, dictated by the
method used to attach components to the board. Initially, these discussions
will assume that the components are to be attached using a technique known
as through-hole, which is described in more detail below. The pads associated
with the through-hole technique are typically circular, and holes are drilled
through both the pads and the board using a computer-controlled drilling
machine (Figure 18.7). 7

Pad

Track

FR4 Hole

High-speed drill

FIGURE 18.7
Single-sided boards:
Drilling the holes.

 7 This is usually referred to as an NC drilling machine, where NC stands for numerically
controlled .

 Once the holes have been drilled, an electroless plating process referred to as
tinning (in England) or plating (in America) is used to coat the tracks and pads
with a layer of alloy. This used to be a tin-lead alloy (hence, the name tinning)
but there’s an increasing use of RoHS-compliant materials. This alloy is used
to prevent the copper from oxidizing and to provide protection against con-
tamination. The deposited alloy has a rough surface composed of vertical crys-
tals called spicules, which, when viewed under a microscope, resemble a bed
of nails. To prevent oxygen from reaching the copper through pinholes in the

SECTION 2 Components and Processes258

alloy, the board is placed in a refl ow oven where it is heated by either Infrared
(IR) radiation or hot air. The refl ow oven causes the alloy to melt and form a
smooth surface (Figure 18.8).

 After the board has cooled, a layer known as the solder mask is applied to the surface
carrying the tracks (the purpose of this layer is discussed in the next section). One
common technique is for the solder mask to be screen-printed onto the board. In
this case, the screen used to print the mask has patterns that leave the areas around
the pads exposed, and the mask is then cured in an oven. In an alternative tech-
nique, the solder mask is applied across the entire surface of the board as a fi lm
with an adhesive on one side. In this case, a further opto-lithographic stage is used
to cure the fi lm using ultraviolet light. The optical mask used in this process con-
tains opaque patterns, which prevent the areas around the pads from being cured;
these areas are then removed using an appropriate solvent (Figure 18.9).

 Beware! Although there are relatively few core processes used to manufacture cir-
cuit boards, there are almost endless variations and techniques. For example, the
tracks and pads may be created before the holes are drilled, or vice versa. Similarly,

Protective alloy

Copper tracks
(and pads)

FR4

FIGURE 18.8
Single-sided boards:
Coating the copper with
a layer of alloy.

Protective
alloyCopper

tracks

FR4

Solder mask

Holes in solder mask
around pads

Solder mask

FIGURE 18.9
Single-sided boards:
Adding the solder mask.

Printed Circuit Boards (PCBs) CHAPTER 18 259

the protective alloy may be applied before the solder mask, or vice versa. This latter
case, known as Solder Mask Over Bare Copper (SMOBC), prevents solder from leaking
under the mask when the protective alloy melts during the process of attaching
components to the board. Thus, the protective alloy is applied only to any areas
of copper that are left exposed by the solder mask, such as the pads at the end of
the tracks. As there are so many variations and techniques, these discussions can
hope to offer only an overview of the main concepts.

 LEAD THROUGH-HOLE (LTH)
 Prior to the early 1980s, the majority of integrated circuits were supplied in
packages that were attached to a circuit board by inserting their leads through
holes drilled in the board. This technique, which is still used to some extent, is
known as Lead Through-Hole (LTH), Plated Through-Hole (PTH), or, more con-
cisely, through-hole. In the case of a single-sided board, any components that are
attached to the board in this fashion are mounted on the opposite side to the
tracks. This means that any masks used to form the tracks are actually created
as mirror-images of the required patterns (Figure 18.10).

(Plating and solder mask layers
omitted for reasons of clarity)

Component
mounting
holes

Pads and
holes

Flip board
upside down

Tracks

Integrated circuit
(dual-in-line package)

TracksFR4

FIGURE 18.10
 Populating the board:
Lead through-hole
(LTH).

 The act of attaching components is known as populating the board, and the area
of the board occupied by a component is known as its footprint. Early manufac-
turing processes required the boards to be populated by hand, but modern pro-
cesses make use of automatic insertion machines. Similarly, component leads
used to be hand-soldered to the pads, but modern processes employ automatic
techniques, such as wave soldering, refl ow ovens, or vapor-phase soldering as dis-
cussed in the following topics.

 WAVE SOLDERING
 Wave soldering and the Lead Through-Hole (LTH) population technique go hand-
in-hand. A wave soldering machine is based on a tank containing hot, liquid

SECTION 2 Components and Processes260

solder (Figure 18.11). The machine creates a wave (actually, a large ripple) of
solder that travels across the surface of the tank. Circuit boards populated using
the through-hole technique are passed over the machine on a conveyer belt.
The system is carefully controlled and synchronized such that the solder wave
brushes across the bottom of the board only once.

 The solder mask (which was introduced earlier in this chapter) prevents the
solder from sticking to anything except the exposed pads and component leads.
Because the solder is restricted to the area of the pads, surface tension causes it to
form good joints between the pads and the component leads. Additionally, cap-
illary action causes the solder to be drawn up the hole, thereby forming reliable,
low-resistance connections. If the solder mask were omitted, the solder would
run down the tracks away from the component leads. In addition to forming
bad joints, the amount of heat absorbed by the tracks would cause them to sep-
arate from the board (this is not considered to be a good thing to happen).

 SURFACE MOUNT TECHNOLOGY (SMT)
 In the early 1980s, new techniques for packaging integrated circuits and popu-
lating boards began to appear. The most popular is Surface Mount Technology
(SMT), in which component leads are attached directly to pads on the surface
of the board. Components with packages and lead shapes suitable for this tech-
nology are known as Surface Mount Devices (SMDs). One example of a package
that achieves a high lead count in a small area is the Quad Flat Pack (QFP), in
which leads are present on all four sides of a thin, square package. 8

FR4

Component
lead

(Plating and solder mask layers
omitted for reasons of clarity)

Direction of

circuit board

Circuit board
populated with

integrated circuits

Direction of

solder w
ave

Tank of
hot,

liquid
solder

Wave of solder
Integrated

circuit

Soldered joint
after solder

wave

Copper pad

FIGURE 18.11
Wave soldering.

 8 Other packaging styles such as Pad Grid Arrays (PGAs) and Ball Grid Arrays (BGAs)—which
are also suitable for surface mount technology—are introduced in more detail in Chapter
20: Advanced Packaging Techniques .

Printed Circuit Boards (PCBs) CHAPTER 18 261

 Boards populated with surface mount devices are fabricated in much the same
way as their through-hole equivalents (except that the pads used for attaching
the components are typically square or rectangular and do not have any holes
drilled through them). 9 However, the processes begin to diverge after the sol-
der mask and plating layers have been applied. A layer of solder paste is screen-
printed onto the pads, and the board is populated by an automatic pick-and-place
machine, which pushes the component leads into the paste (Figure 18.12).

 Thus, in the case of a single-sided board, the components would be mounted on
the same side as the tracks. When all of the components have been attached, the
solder paste is melted to form good conducting bonds between their leads and
the board’s pads. The solder paste can be melted by placing the board in a refl ow
oven, where it is heated by Infrared (IR) radiation or by hot air. Alternatively, the
solder may be melted using vapor-phase soldering, in which the board is lowered
into the vapor-cloud above a tank containing boiling hydrocarbons. 10

 Surface mount technology is well suited to automated processes. Because the
components are attached directly to the surface of the board, they can be con-
structed with leads that are fi ner and more closely spaced than their through-hole

(Plating and solder mask layers
omitted for reasons of clarity)

Integrated circuit
(quad flat package)

Tracks

Solder paste

Pad

FR4

Component lead

No holes
in pads

FIGURE 18.12
 Populating the board:
Surface mount
technology (SMT).

 9 Actually, the pads may have holes, in the case of the HDI/microvia technologies discussed
later in this chapter.
 10 Vapor-phase soldering is becoming increasingly less popular due to environmental
concerns.

SECTION 2 Components and Processes262

equivalents. This results in smaller and lighter packages which can be mounted
closer together and occupy less of the board’s surface area, which is referred to
as real estate. This, in turn, results in smaller, lighter, and faster circuit boards.
The fact that the components do not require holes for their leads is also advan-
tageous, because drilling holes is a time-consuming and expensive process.
Additionally, if any holes are required to make connections through the board
(as discussed below), they can be made much smaller because they do not have
to accommodate component leads.

 DOUBLE-SIDED BOARDS
 There is a simple game played by children all over the world. The game com-
mences by drawing three circles and three squares on a piece of paper, and then
trying to connect each circle to each square without any of the connecting lines
crossing each other (Figure 18.13).

 Children can devote hours to this game, much to the delight of their parents. 11
Unfortunately, there is no solution, and one circle-square pair will always
remain unconnected. This simple example illustrates a major problem with
single-sided boards, which may have to support large numbers of component
leads and tracks. If any of the tracks cross, an undesired electrical connection
will be made and the circuit will not function as desired. One solution to this
dilemma is to use wire links called jumpers (Figure 18.14).

 Unfortunately, the act of inserting a jumper is as expensive as for any other
component. At some point it becomes more advantageous to employ a double-
sided board , which has tracks on both sides.

 Initially, the construction of a double-sided board is similar to that for a
single-sided board. Assuming a subtractive process, copper foil is bonded to

Start with three circles
and three squares

Can’t make the
connection

1 2 3

A B C

1 2 3

A B C

FIGURE 18.13
Circles and squares game.

 11 Hang on a moment, so that’s why my dad taught me this game!

Printed Circuit Boards (PCBs) CHAPTER 18 263

both sides of the board, and then organic resist is applied to both surfaces
and cured. Separate masks are created for each side of the board, and ultra-
violet light is applied to both sides. The ultraviolet radiation that is allowed
to pass through the masks degrades the resist, which is then removed using an
organic solvent. Any exposed copper that is not protected by resist is etched,
the remaining resist is removed, and holes are drilled. However, a double-sided
board now requires an additional step. After the holes have been drilled, a plat-
ing process is used to line them with copper (Figure 18.15).

 Instead of relying on jumpers, a track can now pass from one side of the board
to the other by means of these copper-plated holes, which are known as vias. 12 , 13
The tracks on one side of the board usually favor the Y-axis (North-South), while

Pad and
hole

Track

FR4

Insulation

WireFlip board
upside
down

(Plating and solder mask layers
omitted for reasons of clarity)

Track

Jumper

Hole

FIGURE 18.14
Using jumpers.

b

Pad on
bottom of board

b

a a

Track on
bottom of board

(Plating and solder mask layers
omitted for reasons of clarity)

Cross-sectional
view

Via

FIGURE 18.15
 Double-sided boards:
Creating vias.

 12 The term via is taken to mean a conducting path linking two or more conducting layers, but
does not include a hole accommodating a component lead (see also the Holes Versus Vias topic).
 13 There are a number of alternative techniques that may be used to create circuit board vias.
By default, however, the term is typically understood to refer to holes plated with copper, as
described here.

SECTION 2 Components and Processes264

the tracks on the other side favor the X-axis (East-West). The inside of the vias and
the tracks on both sides of the board are plated with protective alloy, and solder
masks are applied to both surfaces (or vice versa in the case of the SMOBC-based
processes, which were introduced earlier).

 Some double-sided boards are populated with through-hole or surface mount
devices on only one side. Some boards may be populated with through-hole
devices on one side and surface mount devices on the other. And some boards
may have surface mount devices attached to both sides. This latter case is of
particular interest, because surface mount devices do not require holes to be
drilled through the pads used to attach their leads (they typically have separate
fan-out vias as discussed below). Thus, when using surface mount technology,
it is possible to place two devices directly facing each other on opposite sides
of the board without making any connections between them.

 Having said this, in certain circumstances it may be advantageous to form connec-
tions between surface mount devices directly facing each other on opposite sides
of the board. The reason for this is that a through-board connection can be sub-
stantially shorter than an equivalent connection between adjacent devices on the
same side of the board. Thus, this technique may be of use for applications such
as high-speed data buses, because shorter connections result in faster signals.

 HOLES VERSUS VIAS
 Manufacturers of circuit boards are very particular about the terminology they
use, and woe betide anyone caught mistakenly referring to a hole as a via, or
vice versa. Figure 18.16 should serve to alleviate some of the confusion.

(Plating and solder mask layers omitted for reasons of clarity)

Conducting
metal

Solder paste

Component
pad

Via and pad

Resistor
(surface mount)

Via and pad

Fan-out via and pad

Fan-out via
and padPlated

through-hole

Resistor
(through-hole)

Via

Via and via pad
Component

pad

Via pad

Plated through-hole
and component pad

Component
pad

FR4

FIGURE 18.16
 Holes versus vias.

Printed Circuit Boards (PCBs) CHAPTER 18 265

 In the case of a single-sided board (as illustrated in Figures 18.7 and 18.14),
a hole that is used to accommodate a through-hole component lead is sim-
ply referred to as a hole. By comparison, in the case of double-sided boards (or
multilayer boards as discussed below), a hole that is used to accommodate
a through-hole component lead is plated with copper, and is referred to as a
plated through-hole. Additionally, a hole that is only used to link two or more
conducting layers, but does not accommodate a component lead, is referred
to as a via (or, for those purists among us, an interstitial via). The qualifi cation
attached to this latter case is important, because even if a hole that is used to
accommodate a component lead is also used to link two or more conducting
layers, it is still referred to as a plated through-hole and not a via. (Phew!)

 Because vias do not have to accommodate component leads, they can be created
with smaller diameters than plated through-holes, thereby occupying less
of the board’s real estate. To provide a sense of scale, the diameters of plated
through-holes and their associated pads are usually on the order of 24 mils
(0.6 mm) and 48 mils (1.2 mm), respectively, while the diameters of vias and
via pads are typically 12 mils (0.3 mm) and 24 mils (0.6 mm), respectively.

 Finally, in the case of surface mount devices attached to double-sided boards (or
multilayer boards as discussed below), each component pad is usually connected
by a short length of track to a via, known as a fan-out via, 14 which forms a link to
other conducting layers (an example of a fan-out via is shown in Figure 18.16).
However, if this track exceeds a certain length (it could meander all the way
around the board), an otherwise identical via at the end would be simply referred
to as a via. Unfortunately, there is no standard length of track that differentiates a
fan-out via from a standard via, and any such classifi cation depends solely on the
in-house design rules employed by the designer and board manufacturer.

 MULTILAYER BOARDS
 It is not unheard of for a circuit board to support thousands of components
and tens of thousands of tracks and vias. Double-sided boards can support a
higher population density than single-sided boards, but there quickly comes a
point when even a double-sided board reaches its limits. A common limiting
factor is lack of space for the necessary number of vias. In order to overcome
this limitation, designers may move onwards and upwards to multilayer boards .

 14 Some folks attempt to differentiate vias that fall inside the device’s footprint (under the
body of the device) from vias that fall outside the device’s footprint by referring to the
former as fan-in vias , but this is not a widely used term.

SECTION 2 Components and Processes266

 A multilayer board is constructed from a number of single-sided or double-
sided sub-boards . 15 The individual sub-boards can be very thin, and multilayer
boards with four or six conducting layers are usually around the same thickness
as a standard double-sided board. Multilayer boards may be constructed using
a double-sided sub-board at the center with single-sided sub-boards added to
each side [Figure 18.17(a)]. 16 Alternatively, they may be constructed using only
double-sided sub-boards separated by nonconducting layers of semi-cured FR4
known as prepreg [Figure 18.17(b)].

 15 The term sub-board is not an industry standard, and it is used in these discussions only to
distinguish the individual layers from the completed board.
 16 This technique is usually reserved for boards that carry only four conducting layers.

Temperature
and pressure

Copper

Copper

Copper
FR4

FR4

Double-
sided

Single-
sided

FR4 Prepreg

Copper

Single-
sided

Temperature
and pressure

Copper

Copper
FR4

Copper
FR4

Copper
Double-
sided

Double-
sided

(a) (b)

FIGURE 18.17
 Multilayer boards:
Alternative structures.

 After all of the layers have been etched to form tracks and pads, the sub-boards
and prepreg are bonded together using a combination of temperature and pres-
sure. This process also serves to fully cure the prepreg. Boards with four con-
ducting layers are typical for designs intended for large production runs. The
majority of multilayer boards have less than ten conducting layers, but boards
with twenty-four conducting layers or more are not outrageously uncommon,
and some specialized boards like backplanes (as discussed later in this chapter)
may have 60 layers or more!

 THROUGH-HOLE, BLIND, AND BURIED VIAS
 To overcome the problem of limited space, multilayer boards may make use
of through-hole, blind, and buried vias. A through-hole via passes all the way
through the board, a blind via is visible from only one side of the board, and
a buried via is used to link internal layers and is not visible from either side of
the board (Figure 18.18).

Printed Circuit Boards (PCBs) CHAPTER 18 267

 Unfortunately, although they help to overcome the problem of limited space,
blind and buried vias signifi cantly increase the complexity of the manufactur-
ing process. When these vias are only used to link both sides of a single sub-
board, that board must be drilled individually and a plating process used to
line its vias with copper. Similarly, in the case of vias that pass through a num-
ber of sub-boards, those boards must be bonded together, drilled, and plated
as a group. Finally, after all of the sub-boards have been bonded together, any
holes that are required to form plated through-holes and vias are drilled and
plated. Blind and buried vias can greatly increase the number of tracks that a
board can support but, in addition to increasing costs and fabrication times,
they can also make it an absolute swine to test.

 POWER AND GROUND PLANES
 The layers carrying tracks are known as the signal layers. In a multilayer board, the
signal layers are typically organized so that each pair of adjacent layers favors
the Y-axis (North-South) and the X-axis (East-West), respectively. Additionally,
two or more conducting layers are typically set aside to be used as power and
ground planes. The power and ground planes usually occupy the central layers,
but certain applications have them on the board’s outer surfaces. This latter tech-
nique introduces a number of problems, but it also increases the board’s protec-
tion from external sources of noise, such as electromagnetic radiation.

 Unlike the signal layers, the bulk of the copper on the power and ground
planes remains untouched. The copper on these layers is etched away only in

(Plating and solder mask layers
omitted for reasons of clarity) Buried via

Blind via

Through-hole via
Layers
of FR4

Cross-
sectional

view

FIGURE 18.18
 Through-hole versus
blind versus buried vias.

SECTION 2 Components and Processes268

those areas where it is not required to make a connection. As a simple exam-
ple, consider a through-hole device with eight leads. Assume that leads 4 and
8 connect to the ground and power planes, respectively, while the remaining
leads are connected into various signal layers (Figure 18.19).

Thermal relief pad
(after drilling)Anti-pads

Holes

a

cThermal relief pad
(before drilling) b

d
FR4

4
3

2
1

5
6

7
8

Ground
plane

Power plane

4

5

6
7

8

c b

d

This plated through-hole is
connected into the ground plane

Signal layer

Power plane

This plated through-hole is
connected into the power plane

Ground plane

Signal layer

FIGURE 18.19
Power and ground planes; thermal relief and anti-pads.

Printed Circuit Boards (PCBs) CHAPTER 18 269

 For the sake of simplicity, the exploded view in Figure 18.19 shows only the
central sub-board carrying the power planes; the sub-boards carrying the signal
layers would be bonded to either side. Also note that the holes shown in the
prepreg in the exploded view would not be drilled and plated until all of the
sub-boards had been bonded together.

 In the case of component leads 1, 2, 3, 5, 6, and 7, both the power and ground planes
have copper removed around the holes. These etched-away areas, which are referred
to as anti-pads, are used to prevent connections to the planes when the holes are
plated. Similarly, the power plane has an anti-pad associated with lead 4 (the ground
lead), and the ground plane has an anti-pad associated with lead 8 (the power lead).

 The power plane has a special pattern etched around the hole associated with
lead 8 (the power lead), and a similar pattern is present on the ground plane
around the hole associated with lead 4 (the ground lead). These patterns, which
are referred to as thermal relief pads , 17 are used to make electrical connections
to the power and ground planes. The spokes in the thermal relief pads are large
enough to allow suffi cient current to fl ow, but not so large that they will conduct
too much heat.

 Thermal relief pads are necessary to prevent excessive heat from being absorbed
into the ground and power planes when the board is being soldered. 18 When
the solder is applied, a surface-tension effect known as capillary action sucks
it up the vias and plated through-holes. The solder must be drawn all the way
through to form reliable, low-resistance connections. The amount of cop-
per contained in the power and ground planes can cause problems because it
causes them to act as thermal heat sinks. The use of thermal relief pads ensures
good electrical connections, while greatly reducing heat absorption. If the ther-
mal relief pads were not present, the power and ground planes would absorb
too much heat too quickly. This would cause the solder to cool and form plugs
in the vias resulting in unreliable, high-resistance connections. Additionally, in
the case of wave soldering, so much heat would be absorbed by the power and
ground planes that all of the layers forming the board could separate, in a pro-
cess known as delamination.

 17 The pattern of a thermal relief pad is often referred to as a wagon wheel, because the links
to the plated-through hole or via look like the spokes of a wheel. Depending on a number
of factors, a thermal relief pad may have anywhere from one to four spokes.
 18 For future reference, the term pad-stack refers to any pads, anti-pads, and thermal relief
pads associated with a particular via or plated-through hole as it passes through the board.

SECTION 2 Components and Processes270

 A special fl avor of multilayer boards known as Padcap (or Pads-Only-Outer-
Layers) are sometimes used for high-reliability military applications. Padcap
boards are distinguished by the fact that the outer surfaces of the board only
carry pads, while any tracks are exclusively created on inner layers and con-
nected to the pads by vias. Padcap technology offers a high degree of protec-
tion in hostile environments because all of the tracks are inside the board.

 HIGH DENSITY INTERCONNECT (HDI) AND
MICROVIA TECHNOLOGIES
 One exciting (and relatively recent) circuit board development is that of High
Density Interconnect (HDI). This features the use of extremely thin tracks and tiny
vias called microvias. HDI offi cially refers to any vias and via pads with diameters
of 6 mils (0.15 mm) and 12 mils (0.3 mm)—or smaller—respectively. By 2002,
boards using 4-mil and 3-mil diameter microvias were reasonably common; by
2008 folks were using 2-mil and 1-mil microvias.

 In a typical implementation, one or two microvia layers are added to the outer
faces of a standard multiplayer board; thus, the term buildup technology is also
commonly used when referring to high density interconnect. In fact, the terms
HDI , microvia , and buildup technology are often used interchangeably.

 Microvias—which are actually blind vias that just pass through one or more
of the buildup layers on the outer faces of the main board—may be created
using a variety of techniques. One common method is to use a laser, which can
 “ drill” 20,000 � microvias per second.

 The reason HDI with microvias is so necessary is largely tied to recent advances
in device packaging technologies. It’s now possible to get devices with 2000
pins (or pads or leads or connections or whatever you want to call them), and
packages with more pins are on the way. These pins are presented as an array
across the bottom of the device. The pin pitch (the distance between adjacent
pins) has shrunk to the extent that it simply isn’t possible to connect the pack-
age to a board using conventional via diameters and line widths [there just
isn’t enough space to squeeze in all of the fan-out vias and route (lay down the
paths of) all of the tracks]. The use of microvia technology alleviates this prob-
lem, making it possible to implement a breakout pattern that brings tracks from
the pins outside the device’s footprint and fans them out so that they can be
connected to the board’s regular signal layers and power planes.

 Although using microvia technology isn’t cheap, per se, it can actually end up
being very cost-effective. In one example of which the author is aware, the use

Printed Circuit Boards (PCBs) CHAPTER 18 271

of microvias enabled an 18-layer board to be reduced to 10 layers, made the
board smaller, and halved the total production cost.

 BACKPLANES AND MOTHERBOARDS
 Another fl avor of multilayer boards, known as backplanes, have their own unique
design constraints and form a subject in their own right. Backplanes usually have a
number of connectors into which standard circuit boards are plugged (Figure 18.20).

Circuit
boards

Backplane

Integrated
circuits

Circuit board
connector

Backplane
connector

FIGURE 18.20
Backplanes.

 Backplanes typically do not carry any active components, such as integrated cir-
cuits, but they often carry passive components, such as resistors and capacitors.
If a backplane does contain active components, then it is usually referred to as
a motherboard. In this case, the boards plugged into it are referred to as daughter
boards or daughter cards.

 Because of the weight that they have to support, backplanes for large systems
can be 1 cm thick or more. Their conducting layers have thicker copper plating

SECTION 2 Components and Processes272

than standard boards and the spaces between adjacent tracks are wider to
reduce noise caused by inductive effects.

 Backplanes may also support a lot of hardware, in the form of bolts, earth
straps, and power cables. It is not unusual for a backplane to have multiple
power planes, such as �5 volts, �5 volts, �12 volts, �12 volts, �24 volts,
�24 volts, and so on. Each power plane typically has an independent ground
plane associated with it to increase noise immunity. So, our hypothetical back-
plane would require 12 conducting layers for the power and ground planes
alone. Additionally, systems containing both analog and digital circuits often
require independent power and ground planes for purposes of noise immu-
nity. Backplanes also require excellent thermal tolerance, because some of the
more heroic systems can consume upwards of 200 amps and generate more
heat than a rampaging herd of large electric radiators.

 CONDUCTIVE INK TECHNOLOGY
 The underlying concept of conductive ink technology is relatively simple. Tracks
are screen-printed onto a bare board using a conducting ink, which is then
cured in an oven. Next, a dielectric, or insulating, layer is screen-printed over
the top of the tracks. The screen used to print the dielectric layer is patterned so
as to leave holes over selected pads on the signal layer. After the dielectric layer
has been cured, the cycle is repeated to build a number of signal layers sepa-
rated by dielectric layers. The holes patterned into the dielectric layers are used
to form vias between the signal layers (Figure 18.21).

Holes patterned in
dielectric layer

Conductive ink enters
holes to form vias

Conductive ink
tracks

Screen print
conductive tracks
on surface of FR4

Screen print
dielectric

(insulating) layer

Screen print conductive
tracks on surface of

dielectric layer

FIGURE 18.21
Conductive ink technology.

 Finally, plated through-holes and vias can be created, and components can be
mounted, using the standard processes described previously. The apparent sim-
plicity of the conductive ink technique hides an underlying sophistication in

Printed Circuit Boards (PCBs) CHAPTER 18 273

materials technology. Early inks were formed from resin pastes loaded with silver
or copper powder. These inks required high fi ring temperatures to boil off the
paste and melt the powder to form conducting tracks. Additionally, the end prod-
uct was not comparable to copper foil for adhesion, conductivity, or solderability.

 In the early 1990s, new inks were developed based on pastes containing a mixture
of two metal or alloy powders. One powder has a relatively low melting point,
while the other has a relatively high melting point. When the board is cured in
a refl ow oven at temperatures as low as 200° C, a process called sintering occurs
between the two powders, resulting in an alloy with a high melting point and
good conductivity.

 Conductive ink technology has not yet achieved track widths as fi ne as
traditional circuit board processes, but it does have a number of attractive
features, not the least of which is that it uses commonly available screen-print-
ing equipment. Modern inks have electrical conductivity comparable to copper
and they work well with both wave soldering and refl ow soldering techniques.
Additionally, these processes generate less waste and are more cost-effective
and effi cient than the plating and etching of copper tracks.

 CHIP-ON-BOARD (COB)
 Chip-on-Board (COB) is a relatively modern process that only began to gain
widespread recognition in the early 1990s, but which is now accepted as a com-
mon and cost-effective die attachment technique. As the name implies, unpack-
aged integrated circuits are mounted directly onto the surface of the board. The
integrated circuits are mechanically and electrically connected using similar
wire bonding, tape-automated bonding, and fl ip-chip techniques to those used for
hybrids and System-in-Package (SiP) assemblies. 19 The fi nal step is encapsulation,
in which the integrated circuits and their connections are covered with “ globs ”
of epoxy resin, plastic, or some other material; these “ globs ” are then cured to
form hard protective covers (Figure 18.22). 20

 There are a number of variations of Chip-on-Board. For example, the designer may
wish to maintain an extremely low profi le for applications such as intelligent
credit cards. One way to achieve this is to form cavities in the board into which the

 20 In addition to mechanical and environmental protection, the encapsulating material is
also used to block out light.

 19 Hybrid and System-in-Package (SiP) concepts are introduced in Chapters 19: Hybrids, and
20: Advanced Packaging Techniques, respectively.

SECTION 2 Components and Processes274

integrated circuits are inserted. Compared to surface mount technology, and espe-
cially to through-hole technology, chip-on-board offers signifi cant reductions in
size, area, and weight. Additionally, this technique boosts performance because the
chips can be mounted closer together, resulting in shorter tracks and faster signals.

 FLEXIBLE PRINTED CIRCUITS (FPCS)
 Last, but not least, are Flexible Printed Circuits (FPCs), often abbreviated to fl ex,
in which patterns of conducting tracks are printed onto fl exible materials.
Surprisingly, fl exible circuits are not a recent innovation: they can trace their ances-
try back to 1904 when conductive inks were printed on linen paper. However,
modern fl exible circuits are made predominantly from organic materials such as
polyesters and polyimides. These base layers can be thinner than a human hair, yet
still withstand temperatures up to approximately 700°C without decomposing.

 There are many variants of fl exible circuits, not the least being fl exing, or
dynamic fl ex, and nonfl exing, or static fl ex. Dynamic fl ex is used in applications
that are required to undergo constant fl exing, such as ribbon cables in printers,
while static fl ex can be manipulated into permanent three-dimensional shapes
for applications such as calculators and high-tech cameras, requiring effi cient
use of volume and not just area (Figure 18.23).

 As well as single-sided fl ex, there are also double-sided and multilayer variants.
Additionally, unpackaged integrated circuits can be mounted directly onto the
surface of the fl exible circuits in a similar manner to chip-on-board discussed
above. However, in this case, the process is referred to as Chip-on-Flex (COF).

 A common manifestation of fl ex technology is found in hybrid constructions
known as rigid fl ex, which combine standard rigid circuit boards with fl exible
printed circuits (Figure 18.24).

Unpackaged
integrated circuit

“Glob” of plastic or
epoxy encapsulating

integrated circuit

FR4

Tracks
and pads

Wire bonds

FIGURE 18.22
 Chip-on-Board (COB).

Printed Circuit Boards (PCBs) CHAPTER 18 275

 In this example, the fl exible printed circuit linking two standard (rigid) boards
eliminates the need for connectors on the boards (which would have to be
linked by cables), thereby reducing the component count, weight, and suscep-
tibility to vibration of the circuit, and greatly increasing its reliability.

 The use of fl exible circuits is increasing for a number of reasons. These include
the ongoing development of miniaturized, lightweight, portable electronic

Integrated
circuits

Flexible circuit manipulated into
a three-dimensional shape

FIGURE 18.23
Flexible printed circuits: Static fl ex.

Rigid
circuit board

Flexible
circuit board

Integrated
circuits

Rigid
circuit board

FIGURE 18.24
Flexible printed circuits: Rigid fl ex.

SECTION 2 Components and Processes276

systems such as cellular phones, and the maturing of surface mount technol-
ogy, which has been described as the ideal packaging technology for fl exible
circuits. Additionally, fl exible circuits are amenable to being produced in the
form of a continuous roll, which can offer signifi cant manufacturing advan-
tages for large production runs.

277

 THE OFFSPRING RESULTING FROM
CROSSBREEDING
 The word hybrid is defi ned as “the offspring resulting from crossbreeding. ” Many
would agree that this is an apt description for the species of electronic entities
also known as hybrids, which combine esoteric mixtures of interconnection and
packaging technologies. In electronic terms, a hybrid consists of a collection of
components mounted on a single insulating base layer called the substrate. A typ-
ical hybrid may contain a number of packaged or unpackaged integrated circuits
and a variety of discrete components such as resistors, capacitors, and inductors,
all attached directly to the substrate. Connections between the components are
formed on the surface of the substrate; also, some components such as resistors
and inductors may be fabricated directly onto the surface of the substrate.

 HYBRID SUBSTRATES
 Hybrid substrates are predominantly formed from alumina (aluminum oxide)
or similar ceramic materials. Ceramics have many valuable properties, which
have been recognized since the Chinese fi rst created their superb porcelains
during the Ming dynasty. In addition to being cheap, light, rugged, and well-
understood, ceramics have a variety of characteristics that make them particularly
well-suited to electronic applications. They are nonporous and do not absorb
moisture, they can be extremely tough, 1 they have very good lateral thermal
conductivity, and their coeffi cient of thermal expansion is close to that of silicon.

 CHAPTER 19 CHAPTER 19

 Hybrids

 1 As examples of their toughness, ceramics can be used to create artifi cial bone joints and
to line the faces of golf clubs. In fact, during the Cold War, Glock developed a handgun for
espionage purposes that was fabricated almost completely out of ceramics (so it wouldn’t
trigger metal detectors at airports).

SECTION 2 Components and Processes278

 Good lateral thermal conductivity means that heat generated by the compo-
nents can be conducted horizontally across the substrate, and out through
its leads. The coeffi cient of thermal expansion defi nes the amount a material
expands and contracts due to changes in temperature. If materials with differ-
ent coeffi cients are bonded together, changes in temperature will cause shear
forces at the interface between them. Because silicon and ceramic have similar
coeffi cients of thermal expansion, they expand and contract at the same rate.
This is particularly relevant when unpackaged silicon chips are bonded directly
to the hybrid’s substrate, because it helps to ensure that a change in tempera-
ture will not result in the chips leaping off the substrate.

 Hybrid substrates are usually created by placing ceramic powder in a mold and
fi ring it at high temperatures. The resulting substrates have very smooth surfaces
and are fl at, without any signifi cant curvature. Hybrid substrates typically range in
size from 2.5 cm � 2.5 cm to 10 cm � 15 cm and are in the order of 0.8 mm thick.

 Some hybrids require numbers of small holes between the top and bottom
surfaces of the substrate. These holes will eventually be plated to form con-
ducting paths between the two surfaces, at which time they start to be called
vias. Additionally, depending on the packaging technology being used, slightly
larger holes may be required to accommodate the hybrid’s leads. One tech-
nique for forming these vias and lead-holes is to introduce tiny pillar struc-
tures into the mold. The ceramic powder fl ows around the pillars and, when
the mold (including the pillars) is removed after fi ring, the substrate contains
holes corresponding to the pillars. In the early days, there was no cost-effective
method for drilling vias through a ceramic substrate after it had been fi red. 2
However, developments in laser technology made it possible to punch holes
through fi red substrates using laser beams.

 While the majority of hybrid substrates are ceramic, a wide variety of other
materials may also be employed. These include glass, small FR4 circuit boards
(laminated substrates), and even cardboard. The latter may have appeared
among your Christmas presents, embedded in a pair of socks that play an
annoying tune when you squeeze them. 3

 THE THICK-FILM PROCESS
 The two most common techniques used to create tracks and components on the
surface of hybrid substrates are known as the thick-fi lm and thin-fi lm processes.

 2 A process not dissimilar to attempting to bore holes through a dinner plate.
 3 Thank you, Auntie Barbara, I wear them all the time!

Hybrids CHAPTER 19 279

The thick-fi lm process is based on screen-printing, an ancient art whose inven-
tion is usually attributed to the Chinese around 3000 BC.

 Creating Tracks
 An optical mask is created carrying a pattern formed by areas that are either
transparent or opaque to ultraviolet frequencies. Next, an extremely fi ne
steel mesh the same size as the hybrid substrate is coated with a layer of photo-
resistive emulsion (Figure 19.1).

Fine steel mesh
coated with emulsion

Optical mask

FIGURE 19.1
Thick-fi lm: Optical
mask and emulsion-
coated fi ne steel mesh.

 Note that the simple patterns shown in these diagrams are used for clarity. In
practice, such a mask may contain hundreds or thousands of fi ne lines and
geometric shapes. Also note that these fi gures show a magnifi ed view of a very
small portion of the entire substrate.

 The emulsion-coated mesh is fi rst dried, then baked, and then exposed to ultra-
violet radiation passed through the optical mask. The ionizing radiation passes
through the transparent areas of the optical mask into the emulsion where it
breaks down the molecular structure of the resist. The mesh is then bathed in
an appropriate solvent to dissolve the degraded resist. Thus, the pattern on the
optical mask has been transferred to a corresponding pattern in the resist. The
steel mesh with the patterned resist forms a screen-print mask, through which
a paste containing metal and glass particles suspended in a solvent is applied
to the surface of the substrate (Figure 19.2).

 The metal particles suspended in the paste are usually those of a noble metal
such as gold, silver, or platinum, or an alloy of such metals as pladium-silver
(platinum and silver). When the substrate is dried, the solvent evaporates,
leaving the particles of glass and metal forming tracks on the surface of the
substrate. Thick-fi lm tracks are in the order of 0.01 mm thick. The widths of

SECTION 2 Components and Processes280

the tracks and the spaces between adjacent tracks are normally in the order of
0.25 mm, but can be as low as 0.1 mm or even fi ner in a leading-edge process.

 Multiple layers of tracks can be printed onto the surface, each requiring the
creation of a unique screen-print mask. A pattern of insulating material called
a dielectric layer must be inserted between each pair of tracking layers to keep
them separated. The dielectric patterns are formed from a paste containing
only glass particles suspended in a solvent. Each dielectric layer requires its
own screen-print mask and is applied using a process identical to that used
for the tracking layers. Holes are included in the dielectric patterns where it is
required that tracks from adjacent tracking layers be connected to each other.
Typical hybrids employ four tracking layers, commercial applications are usu-
ally limited to between seven and nine tracking layers, and a practical limit
for current process technologies is around fourteen tracking layers. 4 More lay-
ers can be used, but there is a crossover point where decreasing yields make
the addition of successive layers cost-prohibitive. When all the tracking and
insulating layers have been laid down and dried, the substrate is re-fi red to
approximately 1000° C.

 Creating Resistors
 Resistors can be formed from a paste containing carbon compounds suspended in
a solvent; the mixture of carbon compounds determines the resistivity of the fi nal
component. The resistors require their own screen-print mask and are applied to
the substrate using a process identical to that described above (Figure 19.3).

Ceramic substrate

Screen-print
mask

Screen-printed
tracks

FIGURE 19.2
Thick-fi lm: Tracks screen-printed onto the substrate.

 4 The surface of the substrate becomes increasingly irregular with every layer that is applied.
Eventually, the screen-print mask does not make suffi ciently good contact across the
substrate’s surface, and paste “leaks out ” under the edges of the patterns.

Hybrids CHAPTER 19 281

 When the substrate is dried, the solvent evaporates, leaving the carbon com-
pounds to form resistors on the surface of the substrate. Assuming a constant
thickness, each resistor has a resistance defi ned by its length divided by its
width, and multiplied by the resistivity of the paste. Thus, multiple resistors
with different values can be created in a single screen-print operation by con-
trolling the length and width of each component. However, if a low-resistivity
paste is used, resistors with large values will occupy too great an area. Similarly,
if a high-resistivity paste is used, resistors with small values will be diffi cult
to achieve within the required tolerances. To overcome these limitations, the
process may be repeated with a series of screen-print masks, combined with
pastes of different resistivity.

 When all of the resistors have been created, the substrate is re-fi red to approxi-
mately 600° C. An additional screen-print operation is employed to lay a pro-
tective overglaze over the resistors. This protective layer is formed from a paste
containing glass particles in a solvent and is fi red at approximately 450° C.

 Laser Trimming
 Unfortunately, creating resistors as described above is not as exact a process as
one could wish for. In order to compensate for process tolerances and to achieve
precise values, the resistors have to be trimmed using a laser beam. There are
two types of laser trimming: passive trimming and active trimming. Passive trim-
ming is performed before any of the integrated circuits or discrete components
are mounted on the substrate. Probes are placed at each end of a resistor to
monitor its value while a laser beam is used to cut parts of the resistive material
away. There are a variety of different cuts that may be used to modify the resis-
tor, including plunge cuts, double plunge cuts, or L-shaped cuts (Figure 19.4).

Tracks

Screen-print
mask

Resistor

Ceramic substrate

FIGURE 19.3
Thick-fi lm: Resistors can be screen-printed onto the substrate.

SECTION 2 Components and Processes282

 The L-shaped cut combines a plunge cut with a second cut at 90°. In this case,
the plunge cut provides a coarse alteration and the second cut supplies fi ner
modifi cations. After each resistor has been trimmed, the probes are automati-
cally moved to the next resistor and the process is repeated.

 By comparison, active trimming is used to fi ne-tune analog circuits (such as
active fi lters) and requires the integrated circuits and discrete components to
be mounted on the substrate. The whole circuit is powered-up and the relevant
portion of the circuit is stimulated with suitable signals. A probe is placed at the
output of the circuit to monitor characteristics such as amplifi cation and fre-
quency response. A laser is then used to trim the appropriate resistors to achieve
the required characteristics while the output of the circuit is being monitored.

 Creating Capacitors and Inductors
 Capacitors and inductors can also be fabricated directly onto the substrate.
However, capacitors created in this way are usually not very accurate, and
discrete components are typically used. If inductors are included on the sub-
strate, they are created at the same time and using the same paste as one of
the tracking layers. There are two main variations of such inductors: spiral and
square spiral (Figure 19.5).

(c) L-shaped cut(b) Double plunge cut(a) Plunge cut

FIGURE 19.4
Thick-fi lm: Laser
trimming of resistors.

(a) Spiral (b) Square spiral

FIGURE 19.5
Thick-fi lm: Inductors
can be screen-printed
onto the substrate.

Hybrids CHAPTER 19 283

 The connection to the center-tap of the inductor can be made in several ways.
A wire link can be connected to the center-tap, arched over the paths forming
the spiral, and connected to a pad on the substrate outside the spiral. A some-
what similar solution is to use a track on another tracking layer to connect the
center-tap to a point outside the spiral. As usual, an insulating dielectric layer
would be used to separate the layer forming the inductor from the tracking
layer. In yet another alternative, the center-tap can be connected to tracks on
the bottom side of the substrate by a via placed at the center of the spiral.

 Double-sided Thick-Film Hybrids
 Thick-fi lm hybrids can support tracking layers on both sides of the substrate,
with vias being used to make any necessary connections between the two
sides. Components of all types can be mounted on both sides of the sub-
strate as required, but active components such as integrated circuits are usually
mounted only on the upper side.

 Subtractive Thick-Film Technology
 As with any branch of electronics, new developments are always appearing on
the scene. For example, a company called Silonex (http://www1.silonex.com /)
developed a process called Subtractive Thick Film (STF), which involves the
integration of different technologies. In addition to standard thick fi lm con-
ductors, resistors, capacitors, and inductors, STF features photolithography and
chemical etching steps used in conjunction with novel materials. It is claimed
that STF produced unprecedented line width density and repeatability, and it
expands the capabilities and performance of thick fi lm modules for wireless
telecommunication, instrumentation, telemetry, and medical devices such as
hearing aids—without sacrifi cing reliability or cost.

 THE THIN-FILM PROCESS
 Thin-fi lm processes typically employ either ceramic or glass substrates. The
substrate is prepared by spluttering a layer of nichrome (nickel and chromium)
alloy across the whole of its upper surface, then electroplating a layer of gold
on top of the nichrome. The nichrome sticks to the substrate and the gold
sticks to the nichrome. The nichrome and gold layers are each in the order of
5 μm (fi ve-millionths of a meter) thick.

 The thin-fi lm process is similar to the opto-lithographic processes used to
create integrated circuits. An optical mask is created carrying a pattern formed
by areas that are either transparent or opaque to ultraviolet frequencies

SECTION 2 Components and Processes284

(Figure 19.6). As usual, the simple patterns shown in the following dia-
grams are used for clarity; in practice, such a mask may contain hundreds of
thousands of fi ne lines and geometric shapes.

Gold

Optical mask

Nichrome

SubstrateFIGURE 19.6
Thin-fi lm: Optical mask
and substrate.

Substrate

Nichrome
and gold

Unexposed
resist

FIGURE 19.7
Thin-fi lm: Combined
tracks and resistors.

 The surface of the gold is coated with a layer of photo-resistive emulsion, which
is fi rst dried, then baked, and then exposed to ultraviolet radiation passed
through the optical mask. The ionizing radiation passes through the transpar-
ent areas of the mask to break down the molecular structure of the emulsion.
The substrate is bathed in a solvent that dissolves the degraded resist, then
etched with a solvent that dissolves both the gold and nichrome from any areas
left unprotected. The nichrome and gold remaining after the fi rst mask-and-etch
sequence represent a combination of tracks and resistors (Figure 19.7).

 The thin-fi lm tracks are typically in the order of 0.025 mm in width, but can
be as narrow as 0.001 mm in a leading-edge process. The substrate is now
recoated with a second layer of emulsion and the process is repeated with a

Hybrids CHAPTER 19 285

different mask. The solvent used in this iteration only dissolves any exposed
gold, but does not affect the underlying nichrome. The gold is removed from
specifi c sites to expose the nichrome underneath, and it is these exposed areas
of nichrome that form the resistors (Figure 19.8).

Optical
mask Exposed

nichrome

Nichrome
and gold

FIGURE 19.8
Thin-fi lm: Separated
tracks and resistors.

Nichrome and
gold track

Nichrome
resistor

Trimming
block

(a) Before trimming (b) After trimming

FIGURE 19.9
Thin-fi lm: Resistors may have complex shapes.

 Laser Trimming
 In certain respects, thin-fi lm designers have less freedom in their control of
resistance values than do their thick-fi lm counterparts. Although the resistiv-
ity of the nichrome layer can be varied to some extent from hybrid to hybrid,
the resistivity for a single hybrid is constant across the whole surface. Thus,
the only way to select the value of an individual resistor is by controlling its
length and width. In addition to simple rectangles, thin-fi lm resistors are often
constructed in complex concertina shapes with associated trimming blocks. The
resistor values can be subsequently modifi ed by laser trimming (Figure 19.9).

SECTION 2 Components and Processes286

 Resistors may also be created in ladder structures and their values modifi ed by
selectively cutting out rungs from the ladder using the laser. Thin-fi lm hybrids
normally employ only one tracking layer on a single side of the substrate; how-
ever, multilayer and double-sided variations are available.

 THE ASSEMBLY PROCESS
 Some hybrids contain only passive components such as resistor-capacitor net-
works; others contain active devices such as integrated circuits. If integrated
circuits are present, they may be individually packaged surface mount devices
or unpackaged bare die. Individually packaged integrated circuits are mounted
onto the substrate using techniques similar to those used for surface mount
technology printed circuit boards. 5 Unpackaged die are mounted directly onto
the substrate using the techniques discussed below.

 Attaching the Die
 The primary method of removing heat from an unpackaged integrated circuit is by
conduction through the back of the die into the hybrid’s substrate. One technique
for attaching die to the substrate is to use an adhesive such as silver-loaded epoxy.
The epoxy is screen-printed onto the sites where the die are to be located, the die
are pushed down into the epoxy by an automated pick-and-place machine, and
the epoxy is then cured in an oven at approximately 180° C (Figure 19.10).

Die PadTrack

Epoxy

Substrate
FIGURE 19.10
 Bare die attached to
substrate.

 5 These techniques were introduced in Chapter 18: Circuit Boards .

 The diagrams shown here have been highly simplifi ed for clarity; in practice, a
hybrid may contain many die, each of which could have numerous pads for power
and ground connections, and hundreds of pads for input and output signals.

Hybrids CHAPTER 19 287

 An alternative method of die attachment is that of a eutectic bond , 6 which
requires gold fl ash (a layer of gold with a thickness measured on the molecular
level) to be applied to the back of the die and also at the target site on the sub-
strate. The substrate is heated to approximately 300° C, and then an automatic
machine presses the die against the substrate and vibrates it at ultrasonic fre-
quencies to create a friction weld. The process of vibrating the die ultrasonically
is called scrubbing .

 Wire Bonds
 After the die have been physically attached to the substrate, electrical con-
nections are made between the pads on each die and corresponding pads on
the substrate. The most commonly used technique is wire bonding, in which
an automatic machine makes the connections using gold or aluminum wires
(Figure 19.11).

Track Die Wire bond

Substrate FIGURE 19.11
Wire bonding.

 6 Eutectic bonds are primarily used for military and aerospace applications that are intended
to withstand high accelerations.
 7 How fi ne is that? Didn’t you read Chapter 14: Integrated Circuits (ICs)? If not, go back and
do so immediately!

 These bonding wires are fi ner than a human hair, 7 the gold and aluminum
wires typically having diameters in the order of 0.05 mm and 0.025 mm,
respectively. In one technique known as a ball bond, the end of the wire is
heated with a hydrogen fl ame until it melts and forms a ball, which is then
brought into contact with the target. As an alternative to ball bonds, aluminum
wires may be attached by pressing each wire against the target and scrubbing it
at ultrasonic frequencies to form a friction weld. Similar wire bonds can also
be used to form links between tracks on the substrate and to form connections
to the hybrid’s pins.

SECTION 2 Components and Processes288

 Tape-Automated Bonding
 Another die attachment process is that of Tape Automated Bonding (TAB), which
is mainly used for high-volume production runs or for devices with a large
number of pads. In this process, a transparent fl exible tape is coated with a thin
layer of metal, into which track-like TAB leads lead frames are patterned using
standard opto-lithographic techniques. The pads on the bare die are attached to
corresponding pads on the tape, which is then stored in a reel (Figure 19.12).

Track Die TAB lead

Substrate
FIGURE 19.13
Tape-automated
bonding (TAB).

Die attached to
TAB leads on tape

TAB tape
TAB tape

with TAB leads

FIGURE 19.12
 Bare die attached to
TAB tape.

 In practice, the TAB leads on the tape can be so fi ne and so close together that they
are diffi cult to distinguish with the human eye. When the time comes to attach
the die to the hybrid’s substrate, silver-loaded epoxy is screen-printed onto the
substrate at the sites where the devices are to be located. This silver-loaded epoxy
is also printed onto the substrate’s pads to which the TAB leads are to be attached.
The reel of TAB tape with attached die is fed through an automatic machine,
which pushes the die and the TAB leads down into the epoxy at their target sites.
When the silver-loaded epoxy is subsequently cured, it forms electrical connec-
tions between the TAB leads and the pads on the substrate (Figure 19.13).

Hybrids CHAPTER 19 289

 Flipped-Chip Techniques
 As an alternative to the previously described approaches, there are several
attachment techniques grouped under the heading of fl ipped chip. In addi-
tion to having the lowest inductance for the connections between the die and
the substrate, fl ipped-chip techniques provide the highest packing densities
because each die has a small footprint (the amount of area occupied by the die).
Thus, fl ipped-chip techniques may be used where the substrate’s real estate is at
a premium and the die have to be mounted very closely together.

 One fl ipped chip technique called solder bumping requires perfect spheres of
solder to be formed on the pads of the die. The die are then “ fl ipped over ”
to bring their solder bumps into contact with corresponding pads on the
substrate (Figure 19.14).

Die
bottom

Solder
bump

Track

Substrate

FIGURE 19.14
Flipped-chip: Solder bumping.

 8 As for printed circuit boards, vapor-phase soldering is becoming increasingly less popular
due to environmental concerns.

 One advantage of this solder bumping technique is that the pads are not
obliged to be at the periphery of a die; connections may be made to pads
located anywhere on a die’s surface. When all of the die have been mounted
on the substrate, the solder bumps can be melted in a refl ow oven using infrared
radiation or hot air. Alternatively, the solder may be melted using vapor-phase
soldering, in which the board is lowered into the vapor-cloud above a tank con-
taining boiling hydrocarbons. 8

SECTION 2 Components and Processes290

 Another fl ipped chip alternative is fl ipped TAB, which, like standard TAB, may
be of use for high-volume production runs or for devices with a large number
of pads (Figure 19.15).

Die
bottom

Substrate

TrackFlipped
TAB
lead

FIGURE 19.15
Flipped-chip: Flipped TAB.

 Advantages of Using Bare Die
 Hybrids in which bare die are attached directly to the substrate are smaller,
lighter, and inherently more reliable than circuits using individually pack-
aged integrated circuits. Every solder joint and other form of connection in an
assembly is a potential failure mechanism. Individually packaged integrated
circuits already have a connection from each pad on the die to the correspond-
ing package lead and require a second connection from this lead to the sub-
strate. By comparison, in the case of a bare die, only a single connection is
required between each pad on the die and its corresponding pad on the sub-
strate. Thus, using bare die results in one less level of interconnect, which can
be extremely signifi cant when using die with hundreds or thousands of pads.

 THE PACKAGING PROCESS
 Hybrids come in a tremendous variety of shapes, sizes, and packages. Many
hybrids are not packaged at all, but simply have their external leads attached
directly to the substrate. In this case, any bare die are protected by covering
them with blobs of plastic polymer in a solvent; the solvent is evaporated, leav-
ing the plastic to protect the devices (Figure 19.16).

Hybrids CHAPTER 19 291

 This is very similar to the Chip-on-Board (COB) techniques introduced in
Chapter 18: Circuit Boards. In fact, if the hybrid’s substrate were a small printed
circuit, this would fall into the category of chip-on-board.

 If the hybrid is targeted for a harsh environment, the entire substrate may be
coated with polymer. If necessary, additional physical protection can be pro-
vided by enclosing the substrate with a ceramic cap fi lled with a dry nitrogen
atmosphere (Figure 19.17).

Pin

Polymer
Track

Substrate

FIGURE 19.16
 Bare die encapsulated in plastic.

Pins through
laser drilled holes

Substrate

Ceramic cap

FIGURE 19.17
Ceramic cap package.

 In this case, any bare die may remain uncovered because the dry nitrogen
environment protects them. If extreme protection is required, the hybrid may
be hermetically sealed in alloy cans fi lled with dry nitrogen (Figure 19.18).

SECTION 2 Components and Processes292

Welded
seam

Insulator
Pin

Alloy can

FIGURE 19.18
 Hermetically sealed package.

 Finally, it should be noted that the majority of the assembly and packaging
techniques introduced above are not restricted to hybrids, but may also be
applied to individual integrated circuits [as discussed in Chapter 14: Integrated
Circuits (ICs)] and System-in-Package (SiP) assemblies (as discussed in
Chapter 20: Advanced Packaging Techniques).

293

 SLIDING DOWN THE RABBIT HOLE
 Traditionally, integrated circuits, hybrids, and printed circuit boards were dif-
ferentiated on the basis of their substrate materials: semiconductors (mainly
silicon), ceramics, and organics, respectively. Unfortunately, even this simple
categorization is less than perfect. Some hybrids use laminate substrates, which
are, to all intents and purposes, small printed circuit boards. So, at what point
does a printed circuit board become a hybrid with a laminate substrate?

 The problem is exacerbated in the case of System-in-Package (SiP), which is a
generic name for a group of advanced interconnection and packaging tech-
nologies featuring multiple integrated circuits (which may be presented as bare
die and/or individually packaged) mounted directly onto a common substrate
(base). We’ll consider SiP technologies in more detail in a moment, but fi rst
let’s remind ourselves of a few things …

 WIRE BONDS VERSUS FLIP-CHIP
 Let’s start by considering a package containing a single silicon chip (die). In one
packaging style, the back of the die is attached to the substrate (the base of the
package), and an automatic wire-bonding tool connects the pads on the die to
corresponding pads on the substrate with wire bonds fi ner than a human hair.

 Alternatively, in the case of a fl ip-chip technique, the pads on the die are no
longer restricted to its periphery, but are instead located over the entire face of
the die. A minute ball of solder is attached to each pad, and the die is fl ipped
over and attached to the package substrate. Each pad on the die has a corre-
sponding pad on the package substrate, and the package-die combo is heated
so as to melt the solder balls and form good electrical connections between the
die and the substrate (Figure 20.1).

 CHAPTER 20 CHAPTER 20

 Advanced Packaging
Techniques

SECTION 2 Components and Processes294

 1 In order to qualify as “chip scale, ” the package must have an area no greater than 1.2 times
that of the die.

 Irrespective of whether we use a wire bond or fl ip-
chip approach, the package’s substrate itself may
be made out of the same material as a printed
circuit board, out of ceramic, or out of some even
more esoteric material. Whatever its composi-
tion, the substrate will contain multiple inter-
nal wiring layers that connect the pads on the
upper surface with pads (or pins) on the lower
surface. The pads (or pins) on the lower surface
(the side that actually connects to the circuit
board) will be spaced much further apart—
relatively speaking—than the pads that connect
to the die. At some stage the package will have

to be attached to a circuit board. In one technique known as a Ball Grid Array
(BGA), the package has an array of pads on its bottom surface, and a small ball
of solder is attached to each of these pads. Each pad on the package will have
a corresponding pad on the circuit board, and heat is used to melt the solder
balls and form good electrical connections between the package and the board
(we’ll return to look at BGA packages in more detail later in this chapter).

 WIRE BONDING AND FLIP-CHIP
 Another technique to get the most silicon into a small package is to take a die,
fl ip it over, and mount it face down on the package substrate using a fl ip-chip
technique. Next, we take a second die, mount it back-to-back on top of the
fi rst (so that the second die is face-up), and use wire bonds to connect this sec-
ond die to the package substrate. Then we package the whole thing as a single
entity.

 CHIP-SCALE PACKAGE (CSP) TECHNOLOGY
 Modern packaging technologies are extremely sophisticated. Some ball grid arrays
have pins spaced 0.3 mm (one-third of a millimeter) apart! In the case of Chip-
Scale Package (CSP) technology, the package is barely larger than the die itself. 1

 In one technique, the chip is fl ipped over and mounted on an interposer, which is
used to redistribute and rearrange the signals. Pads or balls are formed on the bot-
tom of the interposer and these connect to the circuit board (or Hybrid or SiP, as we

Die with array
of pads and a
small ball of
solder on
each pad

Die is flipped over,
attached to the
substrate, then
encapsulated

Package
substrate with
an array of pads

Array of pads on
the bottom of the
substrate (each
pad has a ball of
solder attached)

FIGURE 20.1
 A fl ip-chip ball-grid-
array packaging
technique.

Advanced Packaging Techniques CHAPTER 20 295

shall see). This is very similar to the fl ip-chip BGA technique discussed in the previ-
ous topic, except that the interposer is only fractionally larger than the die itself.

 Another variation of this technique is referred to as a Wafer-Level Chip-Scale
Package (WL-CSP). This is so-called because, while the die are still part of the
wafer, one or more Redirection Layers (RDLs) are added to re-route the internal
signals and present them as an array of pads on the surface of the die. Silicon
bumps are then added to these pads, the die is coated with a thin protective
layer, and the chip is mounted directly to the circuit board (or Hybrid or SiP).

 3-D DIE STACKING
 Even when using Chip-Scale-Package (CSP) or Chip-on-Board (COB) 2 techniques,
the intra-chip connections are a source of fairly signifi cant delays. One obvious
solution is to mount the chips as closely together as possible, thereby reducing
the lengths of the tracks and the delays associated with them. However, each
chip can have only eight others mounted in close proximity on a 2-D substrate.
Thus, in the early 1990s, some specialist applications began to employ a tech-
nique known as 3-D die stacking, in which several bare die (which are extremely
thin) are stacked on top of each other to form a sandwich. The die are
connected together and then packaged as a single entity (Figure 20.2).

 2 The concept of Chip-on-Board (COB) was introduced in Chapter 18: Circuit Boards .

Move from 2-D to
3-D arrangement

Tracks linking the
die connected

down outer
surfaces of cube

Each die has eight
others in close

proximity

Bare die

Circuit board/SiP
substrate

Bare die (which are
very thin) forming

a 3-D stack

Circuit board/SiP
substrate

FIGURE 20.2
 3-D die stacking.

 One problem with this 3-D die stacking technique is the amount of heat that
is generated, which drastically affects the inner layers forming the cube (this
problem could be eased by constructing the die out of diamond, as discus sed

SECTION 2 Components and Processes296

in Chapter 21: Alternative and Future Technologies). Another problem with
traditional techniques is that any tracks linking the die must be connected down
the outer surfaces of the cube. The result is that the 3-D die-stacking technique has
typically been restricted to applications utilizing identical die with regular struc-
tures. For example, the most common application to date has been large memory
devices constructed by stacking SRAM or DRAM die on top of each other.

 A relatively new technique which may serve to alleviate the problem of chip-
on-chip interconnect is a process for creating vias through silicon substrates.
Known as Through Silicon Via (TSV), experiments have been performed in
which aluminum “blobs” are placed on the surface of a silicon substrate and,
by means of a gradient furnace, the aluminum migrates through the silicon,
providing vias from one side to the other (Figure 20.3).

a ab

Put wafer in
gradient furnace

“Blobs” of aluminum
on top of silicon

substrate

b

a

Silicon substrate of
integrated circuit

b

Aluminum migrates
through silicon to

form vias

FIGURE 20.3
Creating vias through
silicon die.

 3 When I fi rst mentioned these concepts in earlier editions of this tome, it was as an
“Alternate and Future Technology ” in Chapter 21: Alternative and Future Technologies. At the
time of this writing in 2008, these processes are starting to come online.

 Another technique more in keeping with the times is to create the vias by
punching the aluminum through the silicon using a laser. These developments
pave the way for double-sided silicon substrates with chips and interconnect
on both sides. Additionally, they offer strong potential for interconnecting the
die used in 3-D die stacking structures. 3

 SYSTEM-IN-PACKAGE (SIP), PIP, AND POP
 As we’ve noted on several occasions, early electronic systems were typically
composed of a number of individually packaged integrated circuits, each with

Advanced Packaging Techniques CHAPTER 20 297

its own particular function (say a microprocessor, some peripheral functions,
some memory devices, etc.). For many of today’s high-end applications, how-
ever, electronics engineers combine all of these functions on a single device,
which may be referred to as a System-on-Chip (SoC).

 The SoC approach is to create a single humongous die, which is subsequently
encased in its own package. Although this sounds jolly clever, there are several prob-
lems with this tactic, such as the fact that these components are time-consuming
(taking anywhere from, say, 9 to 18 months) and expensive (say, $15 to $50 mil-
lion) to develop and deploy. Also, there are issues with integrating analog and digi-
tal functions on the same die, not the least of which is that the cutting edge of
digital design is currently at the 40-nm technology node, while the bleeding edge
of analog design is only at the 90-nm node. There are also yield issues with larger
dies. And yet another consideration is the time and expense involved in re-spinning
the design in the future to evolve existing functionality or to add new features.

 The solution is that of System-in-Package (SiP), 4 in which multiple bare or Chip-Scale
Package (CSP) die are mounted on a common substrate that is used to connect
them all together. The substrate and its components are then placed in (or built
into) a single package. This approach has several advantages, including the fact
that one can include analog, digital, and Radio Frequency (RF) die in the same pack-
age, where each die is implemented using that domain’s most appropriate tech-
nology process. Also, designers can employ a number of off-the-shelf die, coupled,
perhaps, with a limited number of relatively small, internally developed ASICs.

 Just to increase the fun and frivolity, it’s possible to create a number of small SiPs
and then mount these in a larger SiP, in which case we have a scenario known as
Package-in-Package (PiP). Also, in some cases, we have a SiP that is mounted on
top of another SiP, which some refer to as a Package-on-Package (PoP).

 A POSITIVE PLETHORA OF SUBSTRATES
 There are a wide variety of substrates that may be used for System-in-Package
(SiP) assemblies depending on the requirements of the particular application.
Some possibilities are as follows:

 ■ Laminates, such as small, fi ne-line printed circuit boards with copper
tracks and copper vias. These are usually made out of FR4 or polyimide,
and typically contain 5 to 25 tracking layers.

 4 The forerunners to SiPs were known as multichip modules, which fi rst appeared around
1990.

SECTION 2 Components and Processes298

 ■ Ceramic substrates, some of which are similar to those used for hybrids:
formed from a single, seamless piece of ceramic and carrying tracks that
are created using thick-fi lm or thin-fi lm processes (or a mixture of both).
However, a large proportion of ceramic System-in-Packages (SiPs) are of
the cofi red variety (see the following topic), in which case they are formed
from a material such as aluminum nitride or beryllium oxide, and can
contain hundreds of layers.

 ■ Ceramic, glass, or metal substrates, that are covered with a layer of dielec-
tric material, such as polyimide. The dielectric coat is used to modify the
substrate’s capacitive characteristics and tracks are created on the surface
of the dielectric using thin-fi lm processes. Modules of this type typically
have around fi ve tracking layers.

 ■ Semiconductor substrates, predominantly silicon, with very fi ne tracks
formed using opto-lithographic processes similar to those used for inte-
grated circuits. Semiconductor substrates are also known as active sub-
strates, because components such as transistors and logic gates can be
fabricated directly onto their surface. One additional benefi t of using
silicon as a substrate is that its coeffi cient of thermal expansion exactly
matches that of any silicon chips that are attached to it.

 AN EXAMPLE SIP BASED ON COFIRED CERAMICS
 Ceramic substrates have numerous benefi ts (as were discussed in Chapter 19:
Hybrids). However, once the ceramic has been fi red, it is very diffi cult to
machine and cannot be satisfactorily milled, drilled, or cut using currently
available technology. 5 One solution to this problem is cofi red ceramics, in which
a number of slices of ceramic are preformed and then fi red together.

 The process begins with unfi red, or green, ceramic tape, which is rolled out into
paper-thin layers. After each layer has been cut to the required size, microscopic
holes are punched through it to form vias. 6 One technique used to punch these
holes involves a steel die 7 studded with round or square pins (Figure 20.4).

 Unfortunately, although fast in operation, these dies take a long time to con-
struct and the technique is incredibly expensive—each die may cost in the neigh-
borhood of $10,000 and can typically be used for only a single layer of a single

 5 Modern laser technology offers some success in drilling and cutting ceramics, but not as
much as one might hope.
 6 Cofi red substrates typically use a tremendous number of blind and buried vias.
 7 In this context, the term die refers to a piece of metal with a design engraved or embossed
on it for stamping onto another material, upon which the design appears in relief.

Advanced Packaging Techniques CHAPTER 20 299

module. As an alternative, some manufacturers have experimented with program-
mable variants consisting of a matrix of pins, each of which may be retracted or
extended under computer control. Programmable die are very expensive tools to
build initially, but can be quickly reprogrammed for multiple layers and multiple
modules. Their main drawback with this technique is that all of the pins are on a
fi xed grid. Another approach that is routinely used is that of a numerically (com-
puter) controlled tool which punches the holes individually. This technique is
relatively inexpensive, but requires much more time to complete the task.

 After the holes have been punched, a screen-printing operation is used to
backfi ll the holes with a conducting ink (a paste containing metallic powder).
The mask used in this step is referred to as a via-screen. Next, tracks are screen-
printed onto the surface of each layer using the same conducting ink. These
processes are similar to the thick-fi lm hybrid technique, but use much fi ner
meshes for the screen print masks, thereby resulting in much fi ner lines and
spaces (Figure 20.5).

Malleable green
ceramic (paper-thin)

Steel die is pressed
into green ceramic

to form holes

Steel die with pins

Cut-away view
to show steel pins

FIGURE 20.4
Cofi red ceramics:
Punching holes to
form vias.

Conductive ink
fills holes in
the ceramic

Conductive ink screen-
printed onto surface

of green ceramic

FIGURE 20.5
 Cofi red ceramics:
Screen-printing tracks.

SECTION 2 Components and Processes300

 After all of the layers have been prepared in this way, they are stacked up,
pressed together, and prefi red at a relatively low temperature to burn off the
binders used in the conductive inks and any moisture in the ceramic. The sub-
strate is then fully fi red at around 1600°C, which melts the tracks to form good
conductors and vias, and transforms the individual layers into one homoge-
neous piece of ceramic (Figure 20.6).

Circular areas on this
layer may be just pads,
or they may be holes
to yet another layer

Layers pressed together
and fired together

(only two layers are
shown for clarity)

Conductive ink in
the holes forms

vias linking layers

Layers of green ceramic
with screen-printed tracks

FIGURE 20.6
Cofi red ceramics:
Assembling and fi ring
the layers.

 8 Noble metals, such as gold and platinum, are extremely inactive and are unaffected by air,
heat, moisture, and most solvents.

 Cofi red ceramic substrates constructed in this way can contain an amazing num-
ber of layers. Substrates with 100 layers are not uncommon, while leading-edge
processes may support 260 layers or more. To provide a sense of scale, an 85-layer
substrate may be approximately 4.5 mm thick, while a 120-layer substrate will
be around 6.25 mm thick. Finally, after the substrate has been fi red, any tracks
and pads on the surface layers are plated with a noble metal 8 such as gold.

 One not-so-obvious consideration with cofi red ceramics is that the act of roll-
ing out the ceramic tape lines up the particles of ceramic in the direction of
the roll. This causes the layers to shrink asymmetrically when the ceramic is
fi red. To counter this effect, the layers are alternated such that adjacent layers
are rolled in different directions. The net result is symmetrical shrinkage with
respect to the major axes.

Advanced Packaging Techniques CHAPTER 20 301

 Low-Fired Cofi red Ceramics
 One problem with traditional cofi red processes is that the tracks must be cre-
ated using refractory metals . 9 Although these are reasonable conductors, they are
not ideal for high-reliability and high-performance applications. For high reli-
ability, one would ideally prefer a noble metal like gold, while for high perfor-
mance at a reasonable price one would ideally prefer copper. (Copper is one of
the best conductors available for high-frequency applications, especially those
operating in the microwave arena.) Unfortunately, metals like gold and copper
simply vaporize at refractory temperatures.

 The solution is low-fi red cofi red processes, which use modern ceramic materials
whose compositions are very different from those of traditional ceramics. To
differentiate the two, the term HTCC (High-Temperature Cofi red Ceramics) is
used to refer to ceramics requiring tracks to be formed using refractory metals,
while the term LTCC (Low-Temperature Cofi red Ceramics) refers to their lower
temperature counterparts, which can be fi red at temperatures as low as 850°C.
This allows tracks to be screen-printed using copper-based or noble metal-
based conductive inks (the fi ring must take place in a nitrogen-muffl ed furnace
to prevent the metals from oxidizing).

 Assembly and Packaging
 To a large extent, System-in-Packages (SiPs) are created on a design-specifi c
basis. Purely for the sake of these discussions, we will assume a SiP based on
a cofi red ceramic substrate carrying four bare die (a real-world SiP can contain
many more components, including multiple analog, digital, and RF die, and
also discrete components as required).

 Because cofi red substrates are constructed from multiple layers, designers have
the ability to create quite sophisticated structures. For example, holes called
cavities, or wells, can be cut into a number of the substrate’s upper layers before
they are combined together and fi red (Figure 20.7).

 Remembering that the layers of ceramic are paper-thin, the wells are actu-
ally formed from whatever number of layers is necessary to bring them to the
required thickness. These wells will eventually accommodate the die, while
the remaining ceramic will create a bed for the package’s lid. Before the die are
mounted on the substrate, however, the external leads must be attached.

 9 Refractory metals are those such as tungsten, titanium, and molybdenum, which are capa-
ble of withstanding the extremely high, or refractory, temperatures necessary to fi re the
ceramic.

SECTION 2 Components and Processes302

 Pin Grid Arrays
 In the case of a packaging style known as a Pin Grid Array (PGA), the package’s
external connections are arranged as an array of conducting leads, or pins, in the
base. 10 In many PGAs, the leads are brazed directly onto the bottom layer of the
device. Alternatively, in a similar manner to the way in which the wells were cre-
ated in the upper layers, smaller wells may be cut into a number of the substrate’s
lower layers before they are combined together and fi red. Each of these wells is
connected to a track constructed on one of the inner layers. After fi ring, the wells
are lined with a thin layer of metal and the leads are inserted (Figure 20.8).

 After the leads have been inserted, the entire assembly is heated to approximately
1000°C, which is suffi cient to braze the leads to the layer of metal lining the
wells. Finally, the leads are gold-plated to ensure that they will make good elec-
trical connections when the module is eventually mounted on a circuit board.

 Pad, Ball, and Column Grid Arrays
 As an alternative to pin grid arrays, some modules are presented as Pad Grid
Arrays (PGAs), in which the external connections are arranged as an array of
conducting pads on the base. In yet another alternative, which has become one

Large holes punched in upper layers
(only two upper layers

shown for clarity)

Cutaway to show cross-
sectional view of well

Wells

All of the layers (except the top one)
may have tracks and vias

(which are not shown for clarity)

A large number
of layers are

used to create
the full package

FIGURE 20.7
Cofi red ceramics:
Creating wells.

 10 Any package substrate (ceramic, laminate, etc.) may be presented to the outside world in
the form of a Pin Grid Array (PGA). Also, individual silicon chips may also be presented in
a PGA packages.

Advanced Packaging Techniques CHAPTER 20 303

of the premier packaging technologies currently in use, devices may be pre-
sented as Ball Grid Arrays (BGAs) 11 , 12 or Column Grid Arrays (CGAs). These forms
of package are similar to a Pad Grid Array (PGA), but with the addition of small
balls or columns of solder attached to the conducting pads (Figure 20.9).

View of bottom of pin grid
array with protruding pins

Ceramic
layers

Pin brazed
into well

Well formed in ceramic layers
to accommodate the pin

FIGURE 20.8
Pin grid arrays (PGAs).

 11 Ball grid arrays may also be referred to as solder grid arrays, bump grid arrays, or land grid arrays .
 12 Any package substrate (ceramic, laminate, etc.) may be presented to the outside world in
the form of a Ball Grid Array (BGA) or Column Grid Array (CGA). Also, individual silicon
chips may also be presented in BGA or CGA packages.

Copper pad on
circuit board

Normal solder

High-temperature
solder ball

Normal solder

Ball grid
array

Ceramic layers

Column grid
array

High-temperature
solder column

Circuit board

Pad brazed
into well

Normal solder

Normal solder

FIGURE 20.9
Ball grid arrays (BGAs) and column grid arrays (CGAs).

SECTION 2 Components and Processes304

 The balls (or columns) are made out of a high-temperature solder, which does
not melt during the soldering process. Instead, a standard low-temperature sol-
der, referred to as eutectic solder, is used to connect the balls (or columns) to
the pads. These packages are said to be “self-aligning” because, when they are
mounted on a circuit board and heated in a refl ow oven, the surface tension of
the eutectic solder causes the device to automatically align itself.

 Ball grid arrays are physically more robust than column grid arrays. However,
column grid arrays are better able to accommodate any thermal strains caused
by temperature mismatches between the SiP and the circuit board.

 Fuzz-Buttons
 In yet another variant, which may be of use for specialist applications, small balls
of fi brous gold known as fuzz-buttons are inserted between the pads on the base
of a Pad Grid Array (PGA) package and their corresponding pads on the board.
When the package is forced against the board, the fuzz-buttons compress to
form good electrical connections. One of the main advantages of the fuzz-button
approach is that it allows broken devices to be quickly removed and replaced.

 Populating the Die
 Once the external leads have been connected, the SiP is ready to be populated
with its die (Figure 20.10). In addition to Chip Scale Packages (CSPs) and 3-D
die stacks, bare die can be physically mounted on the substrate using adhe-
sive, eutectic, or fl ipped-chip techniques, and electrically connected using wire
bonding, tape automated bonding, or solder bumping methodologies. After
the die have been mounted, the wells are back-fi lled with nitrogen, and protec-
tive lids are fi rmly attached.

Unpackaged
integrated

circuits

Wells are back-filled with
nitrogen before the

protective ceramic lids
are attached

Protective ceramic lids

FIGURE 20.10
 Populating the SiP.

Advanced Packaging Techniques CHAPTER 20 305

 Before we close, we should remind ourselves that this is just one SiP example.
If we had wished, we could have used the same low-fi red cofi red ceramic sub-
strate, but we could have omitted the wells and mounted the components on
top of the substrate. Alternatively, we could have used some other form of sub-
strate such as a laminate (circuit board). Also, we could use ceramic cap or
hermetically sealed packages as discussed for hybrids in Chapter 19: Hybrids .
In fact, generally speaking, there are no limits to the sorts of things people are
doing in the SiP arena.

 THE MIND BOGGLES
 In addition to the substrates introduced earlier in this chapter, some SiPs use
more esoteric materials such as quartz, garnet, and sapphire. 13 These mod-
ules are targeted toward specialized applications. For example, the ultra-high
frequency capabilities of sapphire are of particular interest in the microwave
arena. Additionally, some SiPs use a mixture of substrates: for example, ceramic
substrates with areas of embedded or deposited silicon or diamond fi lm. Other
devices may use a mixture of tracking techniques: for example, thin-fi lm pro-
cesses for surface signals, combined with thick-fi lm processes for inner layers,
or vice versa.

 In addition to complex materials selection and process problems, designers of
SiPs are faced with a number of other challenges. Parasitic and thermal man-
agement are key issues due to the high interconnection density and high circuit
speeds. Thus, it is simply not possible to split a SiP design into an intercon-
nection problem, a thermal management problem, and a packaging problem.
Each SiP presents a single mammoth problem in concurrent design and typi-
cally requires a unique solution. The result is that working with SiPs can be a
very expensive hobby in terms of tooling requirements and long design times.

 The SiP designer’s task has migrated from one having primarily electronic con-
cerns to one incorporating components of materials science, chemistry, and
packaging. In addition to basic considerations—such as selecting the packag-
ing materials and determining the optimal connection strategy (pin versus pad
versus ball grid array)—the designer must consider a variety of other packaging
problems, including lead junction temperatures, thermal conduction, and con-
vection characteristics.

 13 See also the discussions on diamond substrates in Chapter 21: Alternative and Future
Technologies .

SECTION 2 Components and Processes306

 Furthermore, it is no longer possible for the chip, package, and board design
teams to work in isolation. The problem is that there are so many facets to
this that it makes your head spin. Consider a SiP containing a number of die,
each of which boasts hundreds or thousands of pins. If the I/O placements and
bump assignments on the die are performed without considering how they will
interface to the package, the result may be signal integrity issues, performance
issues, increased package size, and an increase in the number of routing layers
inside the package. In turn, excessive package complexity can easily push the
cost of the package higher than the cost of the silicon chips it contains, thereby
rendering the component uneconomical.

 Similarly, if the SiP is designed without considering how it will interface to the
circuit board on which it will reside, ineffectively assigned pins on the package
can result in problems breaking-out the signals on the board. Once again, this
can result in signal integrity issues, performance issues, increased board size,
and an increase in the number of routing layers on the board.

 The end result is that, in the case of today’s bleeding-edge systems, the chips,
packages, and boards must be designed in conjunction with each other. The
magnitude of the task is daunting, but if it was easy then everybody would be
doing it, and you can slap me on the head with a kipper 14 if it doesn’t make life
exciting!

 14 A kipper is a smoked and salted fi sh (especially tasty when brushed with butter, toasted,
and served as a breakfast dish with strong, hot English tea).

307

 A SMORGASBORD OF TECHNOLOGIES
 Electronics is one of the most exciting and innovative disciplines around, with
evolutionary and revolutionary ideas appearing on almost a daily basis. Some
of these ideas skulk around at the edges of the party, but never really look you
in the eye or take the trouble to formally introduce themselves; some surface for
a short time and then disappear forever into the twilight zone from whence they
came; some tenaciously manifest themselves in mutated forms on a seasonal
basis; and some leap out as if from nowhere with a fanfare of trumpets, and join
the mainstream so quickly that before you know it, they seem like old friends.

 In this chapter, we introduce a smorgasbord of technologies, many of which
have only recently become commercially available or are on the cutting-edge of
research and development. Even the most outrageous topics presented below
have undergone experimental verifi cation, but nature is a harsh mistress and
natural selection will take its toll on all but the fi ttest. Although some of the
following may seem to be a little esoteric at fi rst, it is important to remember
that a good engineer can easily believe three impossible things before break-
fast. Also remember that the naysayers proclaimed that it was impossible for
bumblebees to fl y (although they obviously could), that man would never
reach the moon, and that I would never fi nish this book! 1

 RECONFIGURABLE COMPUTING
 The term hardware is generally understood to refer to any of the physical por-
tions constituting an electronic system, including nuts and bolts, connectors,
components, circuit boards, power supplies, cabinets, and monitors.

 CHAPTER 21 CHAPTER 21

 Alternative and Future
Technologies

 1 Ha! I pluck my chest hairs threateningly in their general direction.

SECTION 2 Components and Processes308

 The term software refers to programs, or sequences of instructions, that are exe-
cuted by hardware. Additionally, fi rmware refers to software programs that are
hard-coded into nonvolatile memory devices, while vaporware refers to either
hardware or software that exists only in the minds of the people who are trying
to sell them to you. 2

 In the days of yore, electronic circuits were hard-wired, which was extremely
limiting. The advent of computers made things much more interesting, because
we now had the ability to modify the software program that was running on
the computer hardware, but what about the concept of modifying the hard-
ware itself …

 Unfortunately, the concept of reconfi gurable computing is akin to the phrase
 “ stretch-resistant socks ” in that they both mean different things to different
people. To the young and innocent, “stretch-resistant” would tend to imply a
pair of socks that will not stretch. But, as those of us who are older, wiser, and
a little sadder know, “stretch-resistant” actually refers to socks that will indeed
stretch—they just do their best to resist it for a while! Similarly, the concept of
reconfi gurable computing is subject to myriad diverse interpretations depending
on the observer’s point of view.

 The advent of SRAM-based FPGAs 3 presented a new capability to the electron-
ics fraternity—the ability to confi gure (program) the device to perform differ-
ent tasks as required. When a system is fi rst turned on, for example, the FPGAs
might be confi gured to perform diagnostic functions, both on themselves and
on the rest of the system. Once the diagnostic checks have been completed, the
system can reconfi gure the FPGAs to fulfi ll the main function of the design.

 The main limitation with the majority of SRAM-based FPGAs is that it is nec-
essary to load the entire device. Also, it is usually necessary to halt the opera-
tion of the entire circuit board while these devices are being reconfi gured.
Additionally, the contents of any registers in the FPGAs are irretrievably lost
during the process. These problems are addressed to some extent by hybrid
(FLASH-SRAM) FPGAs, in which every programmable element in the device
has an associated FLASH bit and an SRAM cell. When the device powers up,
the contents of each nonvolatile FLASH bit are copied into its corresponding
SRAM cell. Such a device is essentially “instant on, ” but it can also be easily

 2 The term “wetware ” may refer either to human brains or programs that are very new and
are not yet as robust as one might hope.
 3 FPGAs were introduced in Chapter 16: Programmable ICs.

Alternative and Future Technologies CHAPTER 21 309

reprogrammed as required. Furthermore, once the device has been powered up
and is running under its initial confi guration, the chip can continue running
while its FLASH is reprogrammed with a new confi guration. This new confi gu-
ration can subsequently be copied over into the SRAM confi guration cells in a
fraction of a second.

 But, as wonderful as all of this may sound, it’s not what many folks consider
to be true reconfi gurable computing. As far as I (the author) am concerned,
reconfi gurable computing means having an FPGA-like 4 component with the
ability to reconfi gure selected portions (up to and including the entire device)
while also providing the following:

■ No disruption to the device’s inputs and outputs.
■ No disruption to the system-level clocking.
■ The continued operation of any portions of the device that are not under-

going reconfi guration.
■ No disruption to the contents of internal registers during reconfi guration,

even in the area being reconfi gured.

 The latter point is of particular interest, because it allows one instantiation
of a function to hand over data to the next function. For example, a group of
registers may initially be confi gured to act as a binary counter. Then, at some
time determined by the main system, the same registers may be reconfi gured
to operate as a Linear Feedback Shift Register (LFSR), 5 whose seed value is deter-
mined by the fi nal contents of the counter before it is reconfi gured.

 All of this would make it possible to “compile ” new design variations in real-
time, which may be thought of as dynamically creating subroutines in hard-
ware! For example, imagine such a device performing Digital Signal Processing
(DSP) tasks for a robotic vision system. The hardware could be reconfi gured
on-the-fl y to accommodate changes in the data being processed, such as dif-
ferent lighting conditions or different algorithms for jungle versus urban
environments.

 Sad to relate, we don’t have such components yet. Even if we did, we don’t
have software tools with the necessary levels of sophistication to confi gure
them. And one can only imagine the problems associated with trying to debug

 4 And I mean this in the loosest sense; I’m not talking about any FPGA fabric that is cur-
rently available on the market.
 5 Linear Feedback Shift Registers (LFSRs) are introduced in detail in Appendix E: Linear Feedback
Shift Registers (LFSRs).

SECTION 2 Components and Processes310

a system whose hardware is transmogrifying itself on-the-fl y. Having said all
this, a new class of device called an Elemental Computing Array (ECA) that was
announced in 2007 may come close …

 ELEMENTAL COMPUTING ARRAYS (ECAs)
 Ah, how I love the smell of freshly minted silicon chips in the morning. So I really
wish I’d been present when the folks at Element CXI (http://www.elementcxi.
com/) unveiled their fi rst Elemental Computing Array (ECA) test chip in June 2007.

 The folks at Element CXI say that this technology: “ delivers super-computer per-
formance on battery power at consumer price points and is expected to be the new
measuring stick for automotive, consumer electronics and communications devices. ”
Brave words indeed, but how does this all work …

 Actually, it’s diffi cult to know quite where to start, because there are so many
aspects to this technology that it makes your head spin. So, in order to keep
what little sanity I have left, I’m going to start at the bottom and work my way
up. Conceptually, the lowest-level functional blocks in an ECA are known as
Elements. There are currently seven types of Elements, which are divided into
three main classes: computation, storage, and signaling (Figure 21.1).

 Compute-Class Elements:

MEMU

MULTBSHF TALUSALUBREO

SME

FIGURE 21.1
There are seven fundamental building blocks, called elements.

 ■ BREO: The Bit RE-Orderer enables shifting, interleaving, packing, and
unpacking operations and can be used for (un)packing, (de)interleaving,
(de)puncturing, bit extraction, simple conditionals, etc.

 ■ BSHF: The Barrel SH i Fter enables shifting operations and can be used for
16-bit barrel shift, left shift, right shift, logical shift, arithmetic shift, con-
catenation, etc.

 ■ MULT: A 16 � 16 signed and unsigned MULTiplier with an optional
32-bit accumulation stage.

Alternative and Future Technologies CHAPTER 21 311

 ■ SALU: The Super ALU performs 16-bit and 32-bit arithmetic and logical
functions, and can be used for sorts, compares, ANDs, ORs, XORs, ADDs,
SUBs, ABS, masking, detecting leading 0’s and leading 1’s, etc.

 ■ TALU: The Triple ALU enables up to three simultaneous logical and arith-
metic functions with conditional execution. This little scallywag can be
used for sorts, compares, ANDs, ORs, XORs, ADDs, SUBs, ABS, masking,
detecting, etc.

 Storage Class Elements:

 ■ MEMU: The MEMory Unit provides random-access memory and sophis-
ticated DAG (Data Address Generation) capabilities used for data storage.

 Signaling Class Elements:

 ■ SME: The State Machine Element is used to implement sequential code,
operate as a coprocessor with other Elements, and operate as a “Virtual
Element” for data-fl ow programs. The SME is a sequential processor, but—
unlike traditional processors—it can be augmented by the other Elements
in the same Cluster (we’ll talk about Clusters in a moment). The SME is
also used to implement the real-time operating system, run-time environ-
ment, housekeeping functions, test and resilience capabilities, and so forth.

 Each Element has four 16-bit inputs and two 16-bit outputs (some Elements
have the capability of ganging a pair of inputs or outputs together to perform
32-bit operations). Each input and output of an Element is queued, thereby
isolating the Element from interconnect delays, and every Element executes an
operation in one clock cycle.

 Also, each Element can be reconfi gured in a single clock cycle. A single instruc-
tion can be used to change the internal structure and function of an Element
and to instruct it to operate on its data in a different way (you can reconfi gure
as many Elements as you wish simultaneously).

 Furthermore, each Element can have eight Contexts; where each Context defi nes
the way in which that element is confi gured and the function/task it will per-
form. This means that each Element is essentially eight Elements. Although
only one of the Element’s Contexts can execute on any given clock cycle, the
other “ virtual ” Elements remain active by collecting data for operations in the
Element input queue. When all required data is available for a “ virtual ” task or
operation, the Element’s control circuitry determines the correct confi guration
for the Element and fi res off the task.

SECTION 2 Components and Processes312

 The next step up the hierarchy is the concept of a Zone, each of which com-
prises four Elements that are directly connected to each other via a Crosspoint
Switch (CPS). The Elements in a Zone are tightly bound, communicating with
each other in a single clock cycle. In turn, a Cluster is comprised of four Zones
as illustrated in Figure 21.2 .

MEMU

CPS

TALU

MULT SALU

SALU

CPS

TALU

MULT BSHF

BREO

CPS

TALU

MULT BSHF

SALU

CPS

TALU

BREO SME

Zone

Cluster

FIGURE 21.2
A Zone comprises four
Elements; a Cluster
comprises four Zones.

 6 Are you following all of this? I’ll be asking questions later!

 In the fi rst ECA implementations, each Cluster contains only a single MEMU
(Memory Unit) and a single State Machine Element (SME). The Cluster is the
smallest repeatable structure on an Elemental Computing Array (ECA) chip. Thus,
the smallest possible ECA would contain only a single Cluster. By comparison,
the fi rst production device (the ECA-64) comprises four identical Clusters, as
illustrated in Figure 21.3 .

 All of the Zones in a Cluster communicate with each other using special
queues. Up to 16 Clusters can be grouped together to form a Super-Cluster .
Similarly, up to 16 Super-Clusters can be grouped together to form a Matrix . 6

Alternative and Future Technologies CHAPTER 21 313

This method of interconnecting levels of hierarchy can be extended indefi nitely
on a single chip, bounded only by the available levels of integration and device
fabrication. Furthermore, ECA devices communicate via PCI Express in the
same hierarchical fashion, thereby extending the hierarchy to the board level.

 When it comes to running applications on an ECA, the fabric is extremely fl ex-
ible, allowing the various portions of a task to be distributed across computing
Elements for maximum speed and parallelism. Alternatively, a task with lower
requirements can be “ folded ” onto a smaller number of Elements (similar
to the hardware design concept of “resource sharing ”), thus time-sharing the
Element with other portions of the same or other tasks.

 Of particular interest is the fact that—from a programming view—a large ECA
appears similar to a small ECA, while multiple ECAs on a board appear similar
to a single ECA—the only difference is the amount of computing resources that
are available.

MEMU

CPS

TALU

MULT SALU

SALU

CPS

TALU

MULT BSHF

BREO

CPS

TALU

MULT BSHF

SALU

CPS

TALU

BREO SME

MEMU

CPS

TALU

MULT SALU

SALU

CPS

TALU

MULT BSHF

BREO

CPS

TALU

MULT BSHF

SALU

CPS

TALU

BREO SME

MEMU

CPS

TALU

MULT SALU

SALU

CPS

TALU

MULT BSHF

BREO

CPS

TALU

MULT BSHF

SALU

CPS

TALU

BREO SME

MEMU

CPS

TALU

MULT SALU

SALU

CPS

TALU

MULT BSHF

BREO

CPS

TALU

MULT BSHF

SALU

CPS

TALU

BREO SME

Cluster

ECA-64

FIGURE 21.3
The fi rst production device—the ECA-64—comprises four Clusters.

SECTION 2 Components and Processes314

 And, when it comes to programming, applications are broken onto subsets
of tasks that express maximum parallelism, and these tasks are then bound to
free Elements (either statically or dynamically) and can be scaled across more
Elements as they become available (or fewer Elements as additional applica-
tions are brought online).

 The end result is that ECAs are claimed to offer performance equivalent to or
greater than ASICs while consuming less power. This is possible because—in tra-
ditional ASIC implementations—each function occupies its own area of silicon
real estate. This results in a signifi cant waste of available resources, because only
a limited number of functions are typically being exercised at any particular time.
By comparison, a single, small ECA can be dynamically reconfi gured “on-the-fl y ”
to perform whatever applications are required at that particular time (higher pri-
ority tasks can be dynamically allocated more resources as required).

 As regards to the actual speeds and feeds, I’m not allowed to talk about this
because I’ve been sworn to secrecy. Suffi ce it to say that the numbers I’ve been
shown (extreme performance while consuming miniscule amounts of power)
made me squeak with delight!

 OPTICAL INTERCONNECT
 Electronics systems exhibit ever-increasing requirements to process ever-
increasing quantities of data at ever-increasing speeds. Interconnection techno-
logies based on conducting wires are fast becoming the bottleneck that limits
the performance of electronic systems.

 To relieve this communications bottleneck, a wide variety of optoelectronic
interconnection techniques are undergoing evaluation. In addition to the
extremely fast propagation of data, 7 optical interconnects offer greater signal
isolation, reduced sensitivity to electromagnetic interference, and a far higher
bandwidth than do conducting wires.

 Fiber-Optic Interconnect
 The fi bers used in fi ber-optic systems are constructed from two different forms of
glass (or other materials) with different refractive indices. These fi bers, which are
fi ner than a human hair, can be bent into weird and wonderful shapes without
breaking. When light is injected into one end of the fi ber, it repeatedly bounces

 7 Light travels at 299,792,458 meters per second in a vacuum. Thus, a beam of light would take
approximately 2.6 seconds to make a round trip from the earth to the moon and back again!

Alternative and Future Technologies CHAPTER 21 315

off the interface between the two glasses, undergoing almost total internal
refl ection with minimal loss, until it reemerges at the other end (Figure 21.4).

Inner core

Light

Cutaway section of optical fiber

Light

Light source

Outer layer

Outer layer
(glass B)

Inner core
(glass A)

Optical fiber

FIGURE 21.4
Light propagating
through an optical fi ber.

Bare die

Standard
metal tracks

for power and
some signals

System-in-Package
substrate

Optical
fiber Bare

die

Surface-emitting
laser diode (or

photo-transistor)

System-in-Package
substrate

Standard wire bonds

Optical fibers
for high-speed

signals

Photo-transistor
(or surface-emitting

laser diode)

FIGURE 21.5
Using fi ber optics to connect base die in a System-in-Package (SiP).

 8 System-in-Package (SiP) was introduced in Chapter 20: Advanced Packaging Techniques.

 Experimental systems using fi ber-optic interconnect have been evaluated at all
levels of a system—for example, to link bare die in a System-in-Package (SiP) 8 as
illustrated in Figure 21.5 .

SECTION 2 Components and Processes316

 The transmitting device employs a surface-emitting laser-diode, which is
constructed along with the transistors and other components on the integrated
circuit’s substrate. The receiving device uses a photo-transistor to convert the
incoming light back into an electrical signal.

 Each die can support numerous transmitters and receivers, which can be
located anywhere on the surface of their substrates. However, there are several
problems with this implementation, including the diffi culty of attaching mul-
tiple optical fi bers, the diffi culties associated with repair and rework (replacing
a defective die), and the physical space occupied by the fi bers. Although the
individual fi bers are extremely thin, SiPs may require many thousands of con-
nections. Additionally, in this form, each optical fi ber can be used only to con-
nect an individual transmitter to an individual receiver.

 As another alternative, optical fi bers may be used to provide intra-board con-
nections, which may be referred to as optical backplanes. In this case, the daugh-
ter boards may be mounted in a rack without an actual backplane, and groups
of optical fi bers may be connected into special couplers (Figure 21.6).

Laser diode or
photo-detector

modules

Integrated
circuits

Optical
amplifier/couplers

Optical fibers

Circuit
boards

FIGURE 21.6
Using fi ber optics to implement an optical backplane.

 Each optical fi ber from a transmitter is connected into a coupler, which ampli-
fi es the optical signal and can retransmit it to multiple receivers. This form of
backplane offers great latitude in regard to the proximity of the boards. In fact,
boards connected in this way can be separated by as much as tens of meters.

Alternative and Future Technologies CHAPTER 21 317

 It Pays to Keep Your Eyes Open
 In 1834, the Scottish scientist John Scott Russell was observing a barge being
pulled along a canal by a pair of horses. When the barge stopped, he noticed
that the bow wave continued forward without appearing to deteriorate in any
way. Most of us wouldn’t have paid this any attention, but Russell jumped on a
horse and followed the wave for miles.

 What Russell had observed was a special form of wave called a soliton that, due
to its contour, can retain its shape and speed. One example of a soliton is the
Severn bore: a wave caused by unusual tidal conditions (where the Severn is a
river that separates England and Wales). Thus a bore (wave) can travel miles up
the river without signifi cant diminishment or deformation.

 The reason this is of interest is that light waves become distorted and attenu-
ated as they travel through optical fi bers—similar to the way in which electrical
pulses deteriorate as they propagate through conducting wires. Scientists and
engineers are now experimenting with light solitons—pulses that can travel
long distances through optical fi bers without distortion.

 Free-Space Interconnect
 In the case of the free-space technique, a laser-diode transmitter communicates
directly with a photo-transistor receiver without employing an optical fi ber.
Consider a free-space technique used to link bare die mounted on the substrate
of a SiP (Figure 21.7).

 In this case, the transmitters are constructed as side-emitting laser diodes along
the upper edges of the die; similarly with the photo-transistors on the receivers.
Each die may contain multiple transmitters and receivers. The free-space tech-
nique removes some of the problems associated with its fi ber-optic equivalent:
there are no fi bers to attach and replacing a defective die is easier.

 However, as for optical fi bers, each transmitter can still be used only to connect
to an individual receiver. Additionally, the free-space technique has its own
unique problems: the alignment of the devices is critical, and there are thermal
tracking issues. When a laser-diode is turned on, it rapidly cycles from ambient
temperature to several hundred degrees Celsius. The heat generated by an indi-
vidual laser-diode does not greatly affect the die because each diode is so small.
However, the cumulative effect of hundreds of such diodes does affect the
die, causing it to expand, thereby disturbing the alignment of the transmitter-
receiver pairs.

SECTION 2 Components and Processes318

 Guided-Wave Interconnect
 Another form of optical interconnect that is receiving signifi cant interest is
that of guided-wave, whereby optical waveguides are fabricated directly on the
substrate of a System-in-Package (SiP). These waveguides can be created using
variations on standard opto-lithographic thin-fi lm processes. One such process
involves the creation of silica waveguides (Figure 21.8). 9

 Using a fl ipped-chip mounting technique, the surface-emitting laser-diodes and
photo-transistors on the component side of the die are pointed down toward
the substrate. One major advantage of this technique is that the waveguides
can be constructed with splitters, thereby allowing a number of transmitters to
drive a number of receivers. On the down side, it is very diffi cult to route one
waveguide over another, because the crossover point tends to act like a splitter
and allows light from the waveguides to “leak” into each other.

System-in-Package
substrate

Photo-
transistor

Bare die

Laser
beam

Side-emitting
laser diode

Standard wire
bonds

System-in-Package
substrate

Standard
metal tracks

(for power and
some signals)

Photo-
transistor

Side-emitting
laser diode

Side-emitting
laser diode

Photo-
transistor

FIGURE 21.7
Free space interconnect.

 9 Thanks for the information on silica waveguides go to Dr. Terry Young of the GEC-Marconi
Research Center, Chelmsford, Essex, England, with apologies for all the extremely technical
details that were omitted here.

Alternative and Future Technologies CHAPTER 21 319

 An alternative form of waveguide technology, photo-imagable polyimide intercon-
nect, which was announced toward the tail-end of 1993, is of particular interest
in the case of a S ystem-in-Package (SiP) based on a ceramic, glass, or metal sub-
strate that is covered with a layer of dielectric material such as polyimide. The
dielectric coat is used to modify the substrate’s capacitive characteristics, and
tracks are created on the surface of the dielectric using thin-fi lm processes.

 When exposed to light passed through an appropriate mask, a layer of photo-
imagable polyimide can be imprinted with patterns in a similar way to exposing
a photograph. After being developed, the polyimide contains low-loss optical
waveguides bounded by relatively opaque refl ective surfaces (Figure 21.9).

 Apart from its inherent simplicity, one of the beauties of this technique is that
both the exposed and unexposed areas of polyimide have almost identical
dielectric constants. Thus, in addition to leveraging off existing technology, the
polyimide waveguides have relatively little impact on any thin-fi lm metalliza-
tion tracking layers that may be laid over them.

 This technique is currently fi nding its major audience in designers of System-
in-Packages (SiPs), but it is also being investigated as a technique for multilayer
circuit boards. In the future, circuit boards could be fabricated as a mixture of
traditional copper interconnect and very high speed optical interconnect.

System-in-Package
substrate

Silica
waveguide

Silicon
dioxide

Silica waveguide
created using

standard
processes

Splitter

Splitter can be used to split
transmitter to two receivers,
or combine two transmitters

to one receiver
System-in-Package

substrate

Silicon dioxide
deposited over

silica waveguide

Surface-
emitting laser

diode (or photo-
transistor)Flipped-chip

mounted bare die

Silicon dioxide

Substrate

Silica
waveguide

Photo-
transistor

(or surface-
emitting

laser diode)

FIGURE 21.8
Guided-wave interconnect: Silica waveguides.

SECTION 2 Components and Processes320

 OPTICAL MEMORIES
 When I sat down to pen the fi rst edition of this tome circa 1992, it was said
that the total sum of human knowledge was doubling approximately every
ten years. Now, in 2008, many references say it’s doubling every fi ve years. 10
Coupled with this, the amount of information that is being generated, stored,
and accessed is increasing at an exponential rate. This is driving the demand for
fast, cheap memories that can store gigabits (a billion bits), terabits (a thou-
sand billion bits), or even petabits (a million billion bits) of data.

 One medium with the potential to cope with this level of data density is opti-
cal storage. Among many other techniques, evaluations are being performed on
extremely thin layers of glass-based materials, 11 which are doped with organic
dyes or rare-earth elements. Using a technique known as Photochemical Hole-
Burning (PHB), a laser in the visible waveband is directed at a microscopic
point on the surface of the glass (Figure 21.10).

 If the laser is weak, its light will pass through the glass without affecting it and
reappear at the other side. If the laser is stronger (but not intense enough to

Photo-imagable
polyimide

Transparent
polyimide

waveguide

System-in-Package
substrate

Mask

Opaque (reflective)
exposed polyimide

Light

FIGURE 21.9
Guided-wave interconnect: Photo-imagable polyimide waveguides.

 10 There’s no wonder I can’t keep up!
 11 One such material, boric-acid glass, is also widely used in heat-resistant kitchenware!

Alternative and Future Technologies CHAPTER 21 321

physically damage the glass), electrons in the glass will be excited by the light.
The electrons can be excited such that they change the absorption characteris-
tics of that area of the glass and leave a band, or hole, in the absorption spec-
trum. To put this another way, if the weak laser beam is redirected at the same
point on the glass surface, its light would now be absorbed and would not
reappear at the other side of the glass.

 Thus, depending on whether or not the light from the weaker beam passes
through the glass, it can be determined whether or not that point has been
exposed to the strong laser. This means that each point can be used to represent
a binary 0 or 1. Because the point affected by the laser is so small, this process
can be replicated millions upon millions of times across the surface of the glass.

 If the points occur at one-micron (one-millionth of a meter) intervals, then it
is possible to store 100 megabits per square centimeter, but this still does not
come close to the terabit storage that will be required. However, it turns out that
each point can be “ multiplexed ” and used to store many bits of information.
A small change in the wavelength of the laser can be used to create another hole
in a different part of the spectrum. In fact, 100X multiplexing has been achieved,
where each point on the glass was used to store 100 bits of data at different wave-
lengths. Using 100X multiplexing offers a data density of 10 gigabits per square
centimeter, and even higher levels of multiplexing may be achieved in the future!

 PROTEIN SWITCHES AND MEMORIES
 Another area receiving a lot of interest is that of switches and memories based on
proteins. We should perhaps commence by pointing out that this concept doesn’t
imply anything gross like liquidizing hamsters to extract their proteins! Out of

(c) Weak laser beam
does not pass through

modified glass

(b) Strong laser beam
modifies absorption

characteristics of glass

(a) Weak laser beam
passes through

unmodified glass

Weak laser Strong laser Weak laser

Point affected
smaller than

1micron (one-
millionth of a meter)

Glass-based
material doped

with organic dyes
or rare-earth

elements

FIGURE 21.10
 Optical memories:
Photochemical hole
burning.

SECTION 2 Components and Processes322

all the elements nature has to play with, only carbon, hydrogen, oxygen, nitro-
gen, and sulfur are used to any great extent in living tissues, along with the occa-
sional smattering of phosphorous, minuscule portions of a few choice metals,
and elements like calcium for bones. The basic building blocks of living tissues
are twenty or so relatively simple molecules called amino acids. For example, con-
sider three of the amino acids called threonine, alanine, and serine (Figure 21.11).

Threonine Alanine Serine

H

H

H O

N C C O H

H C O H

H C H

H

H

H

H O

N C C O H

H C H

H

H

H

H O

N C C O H

H C H

O

H

FIGURE 21.11
Threonine, alanine, and
serine are three of the
twenty or so biological
building blocks called
amino acids.

Threonine Alanine Serine

H

H

H O

N C C

H C O H

H C H

H

H O

N C CH

H C H

H

H O

N C C O HH

H C H

O

H

FIGURE 21.12
Amino acids can link together using peptide bonds to form long polypeptide chains.

 These blocks can join together to form chains, where the links between the
blocks are referred to as peptide bonds, which are formed by discarding a water
molecule (H 2 O) from adjacent COOH and NH 2 groups (Figure 21.12).

 Proteins consist of hundreds or thousands of such chains of amino acids.
Note that the distribution of electrons in each amino acid varies depending on
the size of that acid’s constituent atoms, leaving areas that are slightly more

Alternative and Future Technologies CHAPTER 21 323

positively or negatively charged (similar to a water molecule, as is discussed
later in this chapter). The linear chain shown in Figure 21.12 is known as
the primary structure of the protein, but this chain subsequently coils up into
a spring-like helix, whose shape is maintained by the attractions between the
positively and negatively charged areas in the chain. This helix is referred to as
the protein’s secondary structure, but there’s more, because the entire helix sub-
sequently “ folds ” up into an extremely complex three-dimensional structure,
whose shape is once again determined by the interactions between the posi-
tively and negatively charged areas on the helix. Although this may seem to be
arbitrarily random, this resulting tertiary structure represents the lowest possible
energy level for the protein, so proteins of the same type always fold up into
identical (and stable) confi gurations.

 Organic molecules have a number of useful properties, not the least of which
is that their structures are intrinsically “self healing ” and reject contamination.
Also, in addition to being extremely small, many organic molecules have excel-
lent electronic properties.

 In the case of certain proteins, it’s possible to coerce an electron to move to
one end of the protein or the other, where it will remain until it’s coerced back
again (of course, the term “end ” is somewhat nebulous in this context). Thus, a
protein of this type can essentially be used to store and represent a logic 0 or a
logic 1 value based on the location of this electron. 12 Similarly, it’s possible for
some protein structures to be persuaded to act in the role of switches.

 In the case of traditional semiconductor-based transistors, even when one con-
siders structures measured in fractions of a millionth of a meter, each transistor
consists of millions of atoms. By comparison, protein-based switches and regis-
ters can be constructed using a few thousand atoms, which means that they are
thousands of times smaller, thousands of times faster, and consume a fraction
of the power of their semiconductor counterparts.

 Unlike metallic conductors, some proteins transfer energy by moving electron
excitations from place to place rather than relocating entire electrons. This
can result in switching speeds that are orders of magnitude faster than their
semiconductor equivalents.

 12 In the case of some proteins, rather than physically moving an electron from one “end ”
to the other, it’s possible to simply transfer an excitation from one electron to another. This
requires far less power and occurs much faster that moving the electron itself, but it’s a little
too esoteric a concept to explore in detail here.

SECTION 2 Components and Processes324

 Some proteins react to electric fi elds, while others respond to light. For example,
there is a lot of interest in the protein Rhodopsin, which is used by certain pho-
tosynthetic bacteria to convert light into energy. The bacteria that contain
Rhodopsin are the ones that cause ponds to turn red, and their saltwater cousins
are responsible for the purple tint that is sometimes seen in San Francisco Bay.

 In certain cases, light from a laser can be used to cause such optically responsive
proteins to switch from one state to another (which they do by changing color)
and back again. Additionally, some varieties of proteins are only responsive to
the infl uence of two discrete frequencies. This feature is extremely attractive,
because it offers the possibility of three-dimensional optical protein memories.

 Experiments have been performed in which 3-D cubes have been formed as
ordered arrays of such bi-frequency proteins suspended in transparent poly-
mers. If the protein were affected by a single laser, then fi ring a beam into
the cube would result in a line of proteins changing state. But in the case of
bi-frequency proteins, two lasers mounted at 90 to each other can be used to
address individual points in the 3-D space (Figure 21.13).

Laser beam at
frequency “A”

Laser beam at
frequency “B”

Proteins change color
at intersection point
of two laser beams

3-D cube of optically-
responsive proteins

suspended in
transparent polymer

FIGURE 21.13
Protein memories:
Cubic arrays of light-
sensitive proteins.

 By only slightly enhancing the technology available today, it may be possible
to store as much as 30 gigabits in a 1 cm � 1 cm � 1 cm cube of such material!

 ELECTROMAGNETIC TRANSISTOR FABRICATION
 For some time it has been known that the application of strong electromagnetic
fi elds to special compound semiconductors can create structures that behave like

Alternative and Future Technologies CHAPTER 21 325

transistors. The original technique was to coat the surface of a semiconductor
substrate with a layer of dopant material, and then to bring an extremely strong,
concentrated electromagnetic fi eld into close proximity.

 The theory behind this original technique was that the intense fi eld caused the
electromigration of the dopant into the substrate. However, much to everyone’s
surprise, it was later found that this process remained effective even without
the presence of the dopant!

 Strange as it may seem, nobody actually understands the mechanism that
causes this phenomenon. Physicists currently suspect that the strong elec-
tromagnetic fi elds cause microscopic native defects in the crystals to migrate
through the crystal lattice and cluster together.

 HETEROJUNCTION TRANSISTORS
 If there is one truism in electronics, it is that “ faster is better, ” and a large pro-
portion of research and development funds are invested in increasing the speed
of electronic devices.

 Ultimately, there are only two fundamental ways to increase the speed of semi-
conductor devices. The fi rst is to reduce the size of the structures on the semi-
conductor, thereby obtaining smaller transistors that are closer together. The
second is to use alternative materials that inherently switch faster. However,
although there are a variety of semiconductors, such as gallium arsenide (GaAs),
that offer advantages over silicon for one reason or another, silicon is cheap,
readily available, and relatively easy to work with. Additionally, the electronics
industry has billions of dollars invested in silicon-based processes.

 For these reasons, speed improvements have traditionally been achieved by
making transistors smaller. However, some pundits believe that we are reaching
the end of this route using conventional technologies. At one time, the limiting
factors appeared to be simple process limitations: the quality of the resist, the
ability to manufacture accurate masks, and the features that could be achieved
with the wavelength of ultraviolet light. Around 1990, when structures with
dimensions of 1.0 microns fi rst became available, it was believed that struc-
tures of 0.5 microns would be the effective limit that could be achieved with
opto-lithographic processes, and that the next stage would be a move to X-ray
lithography. However, there have been constant improvements in the tech-
niques associated with mask fabrication, optical systems and lenses, servo
motors, and positioning systems, and advances in chemical engineering such

SECTION 2 Components and Processes326

as chemically amplifi ed resists. 13 The combination of all these factors means
that it is currently possible to achieve structures as small as 32 nanometers by
continuing to refi ne existing processes.

 However, there are other considerations. The speed of a transistor is strongly
related to its size, because it affects the distance electrons have to travel. Thus,
to enable transistors to switch faster, technologists have concentrated on reduc-
ing their size, a strategy that is commonly referred to as scaling. However, while
scaling reduces the size of structures, it is necessary to maintain certain levels of
dopants to achieve the desired effect. This means that, as the size of the struc-
tures is reduced, it is necessary to increase the concentration of dopant atoms.
Increasing the concentration beyond a certain level causes leakage, resulting in
the transistor being permanently ON, and therefore useless. Thus, technologists
are increasingly considering alternative materials and structures.

 An interface between two regions of semiconductor having the same basic
composition but opposing types of doping is called a homojunction. By com-
parison, the interface between two regions of dissimilar semiconductor mate-
rials is called a heterojunction. Homojunctions dominate current processes
because they are easier to fabricate. However, the interface of a heterojunction
has naturally occurring electric fi elds, which can be used to accelerate electrons,
and transistors created using heterojunctions can switch much faster than their
homojunction counterparts of the same size.

 One form of heterojunction that is attracting a lot of interest is found at the
interface between silicon and germanium. Silicon and germanium are in the
same family of elements and have similar crystalline structures. In theory this
should make it easy to combine them, but it’s a little more diffi cult in practice.
One technique is to create a standard silicon wafer with doped regions, and
then to grow extremely thin layers of a silicon-germanium alloy where required.

 The two most popular methods of depositing these layers are Chemical Vapor
Deposition (CVD) and Molecular Beam Epitaxy (MBE). In the case of chemical
vapor deposition, a gas containing the required molecules is converted into
a plasma 14 by heating it to extremely high temperatures using microwaves.
The plasma carries atoms to the surface of the wafer where they are attracted to

 14 A gaseous state in which the atoms or molecules are dissociated to form ions.

 13 In the case of a chemically amplifi ed resist, the application of a relatively small quantity
of ultraviolet light stimulates the formation of chemicals in the resist, which accelerates the
degrading process. This reduces the amount of ultraviolet light required to degrade the resist
and allows the creation of fi ner features with improved accuracy.

Alternative and Future Technologies CHAPTER 21 327

the crystalline structure of the substrate. This underlying structure acts as a tem-
plate. The new atoms continue to develop the structure to build up a layer on
the substrate’s surface (Figure 21.14).

M
ic

ro
w

av
es

Substrate

Plasma Plasma

Layer grown/
deposited on

surface of
substrate

Substrate (wafer)

FIGURE 21.14
Hetrojunction transistors: Chemical vapor deposition (CVD).

 15 Molecular Beam Epitaxy (MBE) is similar to Electron Beam Epitaxy (EBE), in which the
wafer is fi rst coated with a layer of dopant material before being placed in a high vacuum.
A guided beam of electrons is then fi red at the wafer causing the dopant to be driven into it.

 By comparison, in the case of molecular beam epitaxy, the wafer is placed in
a high vacuum, and a guided beam of ionized molecules is fi red at it, effec-
tively allowing molecular-thin layers to be “ painted ” onto the substrate where
required. 15

 Ideally, such a heterojunction would be formed between a pure silicon sub-
strate and a pure layer of germanium. Unfortunately, because germanium
atoms are approximately 4% larger than silicon atoms, the resulting crystal
lattice cannot tolerate the strains that develop, which results in defects in the
structure. In fact, millions of minute inclusions occur in every square millime-
ter, which prevents the chip from working. The solution is in growing a layer of
silicon-germanium alloy, which relieves the stresses in the crystalline structure,
thereby preventing the formation of inclusions (Figure 21.15).

 Heterojunctions offer the potential to create transistors that switch as fast,
or faster, than those formed using gallium arsenide, but use signifi cantly less
power. Additionally, they have the advantage of being able to be produced on
existing fabrication lines, thereby preserving the investment and leveraging cur-
rent expertise in silicon-based manufacturing processes.

SECTION 2 Components and Processes328

 BUCKYBALLS AND NANOTUBES
 Prior to the mid-1980s, the only major forms of pure carbon known to us were
graphite and diamond. In 1985, however, a third form consisting of spheres
formed from 60 carbon atoms (C 60) was discovered. Offi cially known as
Buckministerfullerine 16 —named after the American architect R. Buckminister
Fuller, who designed geodesic domes with the same fundamental symmetry—
these spheres are more commonly known as “buckyballs. ” In 2000, scientists
with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory
(Berkeley Lab) and the University of California at Berkeley reported that they
had managed to fashion a transistor from a single buckyball.

 Sometime later, scientists discovered another structure called the nanotube,
which is like taking a thin sheet of carbon and rolling it into a tube. Nanotubes
can be formed with walls that are only one atom thick. The resulting tube has a
diameter of 1 nanometer (one-thousandth of one-millionth of a meter).

 Nanotubes are an almost ideal material. They are stronger than steel, have
excellent thermal stability, and they are also tremendous conductors of heat
and electricity. For example, a conductor formed from millions of nanotubes
arranged to form a 1-cm cross-section could conduct more than 1 billion amps.

 16 Science magazine voted Buckministerfullerine the “ Molecule of the Year ” in 1991.

Germanium atom

Silicon atom

Inclusions at silicon/germanium boundary

No
inclusions

at boundary

Pure germanium
layer grown/

deposited on
substrate

Silicon
substrate

Silicon
substrate

Silicon-
germanium

alloyFIGURE 21.15
 Hetrojunction
transistors: Depositing
a layer of pure
germanium versus
a layer of silicon-
germanium alloy.

Alternative and Future Technologies CHAPTER 21 329

 In addition to acting as wires, nanotubes can be persuaded to act as transis-
tors; this means that we theoretically have the ability to replace silicon transis-
tors with molecular-sized equivalents at a level where standard semiconductors
cease to function. We’re only just starting to experiment with nanotube-based
transistors, but they can theoretically run at clock speeds of one terahertz or
more, which is orders of magnitude faster than today’s transistors.

 In the longer-term future, it may be that some integrated circuits will use nano-
tubes to form both the transistors and the wires linking them together. In the
shorter-term, we can expect to see interesting mixtures of nanotubes with con-
ventional technologies. For example, in the summer of 2002, IBM announced
an experimental transistor called a Carbon Nanotube FET (CNFET). This device
is based on a fi eld-effect transistor featuring a carbon nanotube acting as the
channel (the rest of the transistor is formed using conventional silicon and
metal processing technologies). It will be a number of years before these
devices become commercially available, but they are anticipated to signifi cantly
outperform their silicon-only counterparts.

 In the meantime … nanotubes continue to fi nd many diverse applications. For
example, consider color television screens and computer displays. For many
years, these were predominantly based on Cathode Ray Tube (CRT) technol-
ogy. More recently, new technologies such as plasma displays and Liquid Crystal
Display (LCD) screens have become popular, because they are thinner, lighter,
and use less power. However plasma displays are expensive and tend to fade
over time, while LCDs tend to “ wash out ” if there’s too much ambient light.

 Now, returning to nanotubes, of particular interest to us here is the fact that
they can be coerced into emitting streams of electrons out of one end. Hmmm,
tiny little electron guns; what wonders could we perform with these little rap-
scallions? Well, remember that each tiny picture element (pixel) on the screen
is formed from three sub-pixels (red, green, and blue). Now, imagine a screen
that’s thin and fl at like a LCD, but is as bright and vibrant as a CRT-based
display; that’s what you end up with if the screen is formed from a carbon
nanotube-based Surface Emission Display (SED), as illustrated in Figure 21.16 .

 As we see, the inside of the screen is covered with red, green, and blue phos-
phor dots (one of each to form each pixel), and each if these dots has its own
carbon nanotube electron gun. This technology has been skulking around in
the background for some time, but it appears as though the outstanding issues
that had been holding it back have been resolved, and SEDs are poised to leap
onto the center stage.

SECTION 2 Components and Processes330

 Toshiba hosted the fi rst public demonstration of a large-scale carbon nanotube-
based SED at the Consumer Electronics Show (CES) in January 2006. Industry
expert Dennis P. Barker attended the show, and he later told me (Max):

 “ High-defi nition television is incredibly realistic, but SED goes one step
beyond. When I saw the Toshiba demonstration, it gave me chills and the
hairs on the back of my neck stood to attention. I have seen the future
and—to me—the future is SED! ”

 But wait, there’s more … because in the early part of 2008, folks started to get
really excited about yet another form of carbon called graphene, which involves
carbon atoms bound in a network of repeating hexagons within a single plane
just one atom thick. Not only is a sheet of graphene the thinnest of materials, it’s
also immensely strong and conducts electrons faster at room temperature than
any other substance known to man. We’re only just starting to explore graphene,
but it appears to offer tremendous potential for new electronic devices, such as
so-called ballistic transistors that could switch much faster than current devices.

Transparent
screenRed, green, and

blue phosphor dots

Tiny carbon nanotubes
emitting electrons

FIGURE 21.16
A single pixel in a Surface Emission Display (SED).

Alternative and Future Technologies CHAPTER 21 331

 DIAMOND SUBSTRATES
 As we have noted on several occasions, there is a constant drive towards smaller,
more densely packed transistors switching at higher speeds. Unfortunately,
packing the little devils closer together and cracking the whip to make them
work faster substantially increases the amount of heat that they generate.
Similarly, the increasing utilization of optical interconnect relies on the use of
laser diodes, but today’s most effi cient laser diodes only convert 30% to 40% of
the incoming electrical power into an optical output, while the rest emerges in
the form of heat. Although each laser diode is relatively small (perhaps as small
as only 500 atoms in diameter), their heating effect becomes highly signifi cant
when tens of thousands of them are performing their version of Star Wars.

 And so we come to diamond, which derives its name from the Greek adamas,
meaning “ invincible. ” Diamond is famous as the hardest naturally occurring sub-
stance known, but it also has a number of other interesting characteristics: it is a
better conductor of heat at room temperatures than any other material, 17 in its
pure form it is a good electrical insulator, it is one of the most transparent materi-
als available, and it is extremely strong and noncorrosive. For all of these reasons,
diamond would form an ideal substrate material for System-in-Packages (SiPs). 18

 In addition to SiPs, diamond has potential for a variety of other electronics
applications. Because diamond is in the same family of elements as silicon and
germanium, it can function as a semiconductor and could be used as a substrate
for integrated circuits. In fact, in many ways, diamond would be far superior to
silicon: it is stronger, it is capable of withstanding high temperatures, and it is
relatively immune to the effects of radiation (the bane of components intended
for nuclear and space applications). Additionally, due to diamond’s high ther-
mal conductivity, each die would act as its own heat sink and would rapidly
conduct heat away. It is believed that diamond-based devices could switch up to
50 times faster than silicon, and operate at temperatures over 500° C.

 Chemical Vapor Deposition
 Unfortunately, today’s integrated circuit manufacturing processes are geared
around fabricating large numbers of chips on wafers that can be up to 300 mm

 17 Diamond can conduct fi ve times as much heat as copper, which is the second most ther-
mally conductive material known.
 18 As we mentioned in Chapter 20: Advanced Packaging Techniques, other exotic substrates
are also of interest to electronic engineers, including sapphire, which is of particular use in
microwave applications.

SECTION 2 Components and Processes332

in diameter (with 450 mm diameter wafers on the horizon). By comparison, a
natural diamond 10 mm in diameter would be considered to be really, REALLY
large. It simply wouldn’t be cost-effective to take one of these beauties, slice it
up, and make diamond-based chips one at a time. Furthermore, if you were to
be the proud owner of a large natural diamond, the last thing that would come
to mind would be to chop it up into thin slices for electronics applications!

 However, there are a number of methods for depositing or growing diamond
crystals, one of the most successful being Chemical Vapor Deposition (CVD), which
was introduced in the earlier discussions on heterojunction transistors. With this
CVD process, microwaves are used to heat mixtures of hydrogen and hydrocar-
bons into a plasma, out of which diamond fi lms nucleate and form on suitable
substrates. Although the plasma chemistry underlying this phenomena is not
fully understood, polycrystalline diamond fi lms can be nucleated on a wide vari-
ety of materials, including metals such as titanium, molybdenum, and tungsten,
ceramics, and other hard materials such as quartz, silicon, and sapphire.

 Chemical Vapor Infi ltration
 CVD processes work by growing layers of diamond directly onto a substrate.
A similar, more recent technique—known as Chemical Vapor Infi ltration (CVI) 19 —
commences by placing diamond powder in a mold. Additionally, thin posts,
or columns, can be preformed in the mold, and the diamond powder can be
deposited around them. When exposed to the same plasma as used in the CVD
technique, the diamond powder coalesces into a polycrystalline mass. After the
CVI process has been performed, the posts can be dissolved, leaving holes
through the diamond for use in creating vias. CVI processes can produce dia-
mond layers twice the thickness of those obtained using CVD techniques at a
fraction of the cost.

 Ubiquitous Laser Beams
 An alternative, relatively new technique for creating diamond fi lms involves
heating carbon in a vacuum using laser beams. Focusing the lasers on a very
small area generates extremely high temperatures, which rip atoms away from
the carbon and also strip away some of their electrons. The resulting ions fl y off
and stick to a substrate placed in close proximity. Because the lasers are tightly
focused, the high temperatures they generate are localized on the carbon,

 19 Thanks go to Crystallume, Menlo Park, CA, USA, for the information on their CVD and
CVI processes.

Alternative and Future Technologies CHAPTER 21 333

permitting the substrate to remain close to room temperature. Thus, this pro-
cess can be used to create diamond fi lms on almost any substrate, including
semiconductors, metals, and plastics.

 The number of electrons stripped from the carbon atoms varies, allowing their
ions to reform in nanophase diamond structures that have never been seen before.
Nanophase materials are a new form of matter that was only discovered rela-
tively recently, in which small clusters of atoms form the building blocks of a
larger structure. These structures differ from those of naturally occurring crys-
tals, in which individual atoms arrange themselves into a lattice. In fact, it is
believed that it may be possible to create more than thirty previously unknown
forms of diamond using these techniques.

 The Maverick Inventor
 In the late 1980s, a maverick inventor called Ernest Nagy 20 invented a simple,
cheap, and elegant technique for creating thin diamond fi lms. Nagy’s process
involves treating a soft pad with diamond powder, spinning the pad at approx-
imately 30,000 revolutions per minute, and maintaining the pad in close con-
tact with a substrate. Although the physics underlying the process is not fully
understood, diamond is transferred from the pad to form a smooth and con-
tinuous fi lm on the substrate. The diamond appears to undergo some kind of
phase transformation, changing from a cubic arrangement into a hexagonal
form with an unusual structure. Interestingly enough, Nagy’s technique appears
to work with almost any material, on almost any substrate!

 The Requirement for Single-Crystal Diamond
 All of the techniques described above result in fi lms that come respectfully
close, if not equal, to the properties of natural diamond in characteristics such
as heat conduction. Thus, these fi lms are highly attractive for use as substrates
in SiPs. However, the unusual diamond structures that are created fall short of
the perfection required for them to be used as a substrate suitable for the fabri-
cation of transistors.

 Substrates for integrated circuits require the single, large crystalline structures
found only in natural diamond. Unfortunately, there are currently no known
materials onto which a single-crystal diamond layer will grow, with the exception
of single crystal diamond itself (which sort of defeats the point of doing it in the

 20 Nagy, whose full name is Ernest Nagy de Nagybaczon, was born in 1942 in Hungary. He
left as a refugee in the 1956 uprising and moved to England.

SECTION 2 Components and Processes334

fi rst place). The only answer appears to be to modify the surface of the substrate
onto which the diamond layer is grown, and many observers believe that this
technology may be developed in the near future. If it does prove possible to cre-
ate consistent, single-crystal diamond fi lms, then, in addition to being “a girl’s
best friend, ” diamonds would also become “an electronic engineer’s biggest buddy. ”

 CONDUCTIVE ADHESIVES
 Many electronics fabrication processes are exhibiting a trend towards mechani-
cal simplicity with underlying sophistication in materials technology. A good
example of this trend is illustrated by conductive, or anisotropic, adhesives,
which contain minute particles of conductive material.

 These adhesives fi nd particular application with the fl ipped-chip techniques
used to mount bare die on the substrates of hybrids, SiPs, or circuit boards.
The adhesive is screen-printed onto the substrate at the site where the die is to
be located, the die is pressed into the adhesive, and the adhesive is cured using
a combination of temperature and pressure (Figure 21.17).

Bare
die Pressure

Pressure

Particles
pressed
together

form
conducting

path

Pad on
die

Pad on
System-in-Package

Conductive particles
suspended in

adhesive

a b

Pads

a

b

System-in-Package
substrate

Raised
pads on
bare die

Flipped-chip
mounting
technique

Conductive adhesive
screen-printed at

site for die

FIGURE 21.17
Conductive adhesives.

 The beauty of this scheme is that the masks used to screen print the adhesive
do not need to be too complex, and the application of the adhesive does not
need to be excessively precise, because it can be spread across all of the com-
ponent pads. The conducting particles are only brought in contact with each

Alternative and Future Technologies CHAPTER 21 335

other at the sites where the raised pads on the die meet their corresponding
pads on the substrate, thereby forming good electrical connections.

 The original conductive adhesives were based on particles such as silver. But,
in addition to being expensive, metals like silver can cause electron migration
problems at the points where they meet the silicon substrates. Modern equiva-
lents are based on organic metallic particles, thereby reducing these problems.

 In addition to being simpler and requiring fewer process steps than traditional
methods, the conductive adhesive technique removes the need for solder,
whose lead content [as discussed in Chapter 18: Printed Circuit Boards (PCBs)]
has raised environmental concerns.

 SUPERCONDUCTORS
 One of the “Holy Grails ” of the electronics industry is to have access to con-
ductors with zero resistance to the fl ow of electrons, and for such conductors,
known as superconductors, to operate at room temperatures. As a concept, super-
conductivity is relatively easy to understand: consider two sloping ramps into
which a number of pegs are driven. In the case of the fi rst ramp, the pegs are
arranged randomly across the surface, while in the second the pegs are arranged
in orderly lines. Now consider what happens when balls are released at the top
of each surface (Figure 21.18).

Regularly
arranged pegs

Randomly
arranged pegs

FIGURE 21.18
Graphical representation of superconductivity.

 In the case of the randomly arranged pegs, the ball’s progress is repeat-
edly interrupted, while in the case of the pegs arranged in orderly lines, the
ball slips through “ like water off a duck’s back. ” Although analogies are always
suspect (and this one doubly so), the ramps may be considered to represent

SECTION 2 Components and Processes336

conducting materials, the gravity accelerating the balls takes on the role of volt-
age differentials applied across the ends of the conductors, the balls play the
part of electrons, and the pegs portray atoms.

 The atoms in materials vibrate due to the thermal energy contained in the
material: the higher the temperature, the more the atoms vibrate. An ordinary
conductor’s electrical resistance is caused by these atomic vibrations, which
obstruct the movement of the electrons forming the current. Using the Kelvin, 21
or absolute, scale of temperature, 0 K (corresponding to –273° C) is the coldest
possible temperature and is known as absolute zero. If an ordinary conductor
were cooled to a temperature of absolute zero, atomic vibrations would cease,
electrons could fl ow without obstruction, and electrical resistance would fall to
zero. A temperature of absolute zero cannot be achieved in practice, but some
materials exhibit superconducting characteristics at higher temperatures. 22

 In 1911, the Dutch physicist Heike Kamerlingh Onnes (1853–1926) discovered
superconductivity in mercury at a temperature of approximately 4 K (�269° C).
Many other superconducting metals and alloys were subsequently discovered
but, until 1986, the highest temperature at which superconducting properties
were achieved was around 23 K (�250° C) with the niobium-germanium alloy
(Nb3 Ge).

 In 1986, Georg Bednorz and Alex Müller discovered a metal oxide that exhib-
ited superconductivity at the relatively high temperature of 30 K (�243° C).
This led to the discovery of ceramic oxides that superconduct at even higher
temperatures. In 1988, an oxide of thallium, calcium, barium, and copper
(Tl2 Ca 2Ba2 Cu 3 O 10) displayed superconductivity at 125 K (�148° C), and, in
1993, a family based on copper oxide and mercury attained superconductivity
at 160 K (�113° C). These “high-temperature” superconductors are all the more
noteworthy because ceramics are usually extremely good insulators.

 Like ceramics, most organic compounds are strong insulators; however, some
organic materials known as organic synthetic metals do display both conductiv-
ity and superconductivity. In the early 1990s, one such compound was shown
to superconduct at approximately 33 K (�240° C). Although this is well below

 21 Invented by the British mathematician and physicist William Thomson (1824–1907), fi rst
Baron of Kelvin.
 22 If the author were an expert in superconductivity, this is the point where he might be
tempted to start muttering about “ Correlated electron movements in conducting planes separated
by insulating layers of mesoscopic thickness, under which conditions the wave properties of electrons
assert themselves and electrons behave like waves rather than particles. ” But he’s not, so he won’t.

Alternative and Future Technologies CHAPTER 21 337

the temperatures achieved for ceramic oxides, organic superconductors are
considered to have great potential for the future.

 New superconducting materials are being discovered on a regular basis, 23 and
the search is on for room temperature superconductors, which, if discovered,
are expected to revolutionize electronics as we know it.

 NANOTECHNOLOGY
 Nanotechnology is an elusive term that is used by different research and devel-
opment teams to refer to whatever it is that they’re working on at the time.
However, regardless of their particular area of interest, nanotechnology always
refers to something extremely small; for example, motors and pumps the size
of a pinhead, which are created using similar processes to those used to fabri-
cate integrated circuits. In fact, around the beginning of 1994, one such team
unveiled a miniature model car which was smaller than a grain of short-grain
rice. This model contained a micro-miniature electric motor, battery, and gear
train, and was capable of traversing a fair-sized room (though presumably not
on a shag-pile carpet).

 In 1959, the legendary American physicist Richard Feynman gave a visionary
talk, in which he described the possibility by which sub-microscopic comput-
ers could perhaps be constructed. Feynman’s ideas have subsequently been
extended to become one of the more extreme branches of nanotechnology fea-
turing micro-miniature products that assemble themselves! The theory is based
on the way in which biological systems operate. Specifi cally, the way in which
enzymes 24 act as biological catalysts 25 to assemble large, complex molecules from
smaller molecular building blocks.

 Back to the Water Molecule
 Before commencing this discussion, it is necessary to return to the humble water
molecule. 26 As you may recall, water molecules are formed from two hydrogen
atoms and one oxygen atom, all of which share electrons between themselves.

 23 A new family of iron-based superconductors was announced in May 2008 as I was pen-
ning these words.
 24 Enzymes are complex proteins that are produced by living cells and catalyze biochemical
reactions at body temperatures.
 25 A catalyst is a substance that initiates a chemical reaction under different conditions
(such as lower temperatures) than would otherwise be possible. The catalyst itself remains
unchanged at the end of the reaction.
 26 Water molecules were introduced in Chapter 2: Atoms, Molecules, and Crystals.

SECTION 2 Components and Processes338

However, the electrons are not distributed equally, because the oxygen atom is a
bigger, more robust fellow which grabs more than its fair share (Figure 21.19).

�ve

O � oxygen atom H � hydrogen atom

H2O water
molecule

Distribution of
electron “cloud”

O

H H

�ve
(overall positive charge)

�ve
(overall positive charge)

(overall negative
charge)

FIGURE 21.19
Distribution of electrons in a water molecule.

 The angle formed between the two hydrogen atoms is 105°. This is because, of
the six electrons that the oxygen atom owns, two are shared with the hydrogen
atoms and four remain the exclusive property of the oxygen. These four huddle
together on one side of the oxygen atom and put “pressure” on the bond angle.
The bond angle settles on 105° because this is the point where the pressure
from the four electrons is balanced by the natural repulsion of the two posi-
tively charged hydrogen atoms (similar charges repel each other).

 The end result is that the oxygen atom has an overall negative charge, while
the two hydrogen atoms are left feeling somewhat on the positive side. This
unequal distribution of charge means that the hydrogen atoms are attracted to
anything with a negative bias—for example, the oxygen atom of another water
molecule. Although the strength of the resulting bond, known as a hydrogen
bond, is weaker than the bond between the hydrogen atom and its “parent”
oxygen atom, it is still quite respectable.

 When water is cooled until it freezes, its resulting crystalline structure is based
on these hydrogen bonds. Even in its liquid state, the promiscuous, randomly
wandering water molecules are constantly forming hydrogen bonds with each
other. These bonds persist for a short time until another water molecule clum-
sily barges into them and knocks them apart. From this perspective, a glass of
water actually contains billions of tiny ice crystals that are constantly forming
and being broken apart again.

Alternative and Future Technologies CHAPTER 21 339

 Imagine a Soup
 However, we digress. Larger molecules can form similar electrostatic bonds
with each other. Imagine a “ soup ” consisting of large quantities of many dif-
ferent types of molecules, two of which, Ma and Mb , may be combined to form
larger molecules of type M ab (Figure 21.20).

Molecule Ma

Molecule Mb
Molecule Mab

FIGURE 21.20
Combining molecules.

 This is similar in concept to two pieces of a jigsaw puzzle, which will only fi t
together if they are in the correct orientation to each other. Similarly, Ma and Mb
will only bond to form Mab if they are formally presented to each other in pre-
cisely the right orientation. However, the surfaces of the molecules are extremely
complex three-dimensional shapes, and achieving the correct orientation is
a tricky affair. Once the molecules have been brought together their resulting
bonds are surprisingly strong, but the chances of the two molecules randomly
achieving exactly the correct orientation to form the bonds are extremely small.

 It is at this point of the story that enzymes reenter the plot. There are numerous
enzymes, each dedicated to the task of “ matchmaking ” for two of their favor-
ite molecules. The surface of an enzyme is also an extremely complex three-
dimensional shape, but it is much larger than its target molecules and has a
better chance of gathering them up. The enzyme fl oats around until it bumps
into a molecule of type Ma to which it bonds. The enzyme then continues on
its trek until it locates a molecule of type Mb . When the enzyme bonds to mol-
ecule Mb , it orientates it in exactly the right way to complete the puzzle with
molecule Ma . (Figure 21.21) .

 The bonds between Ma and Mb are far stronger than their bonds to the enzyme.
In fact, as soon as these bonds are formed, the enzyme is actually repelled by
the two little lovebirds and promptly thrusts Mab away. However, the enzyme
immediately forgets its pique, and commences to search for two more mole-
cules (some enzymes can catalyze their reactions at the rate of half a million
molecules per minute).

SECTION 2 Components and Processes340

 The saga continues, because another, larger enzyme may see its task in life
as bringing Mab together with yet another molecule Mcd . And so it continues,
onwards and upwards, until the fi nal result, whatever that may be, is achieved.

 As our ability to create “designer molecules ” increases, it becomes increasingly
probable that we will one day be able to create “designer enzymes. ” This would
enable us to mass-produce “designer proteins ” that could act as alternatives to
semiconductors (see also the Protein Switches and Memories topic earlier in this
chapter). As one of the fi rst steps along this path, a process could be developed
to manufacture various proteins that could then be bonded to a substrate or
formed into three-dimensional blocks for optical memory applications. At a
more sophisticated level, it may be possible for such a process to directly create
the requisite combinations of proteins as self-replicating structures across the
face of a substrate.

 However, the possibilities extend far beyond the mass-production of proteins.
It is conceivable that similar techniques could be used to assemble nonor-
ganic structures such as microscopic electromechanical artifacts. All that would
be required (he said casually) would be for the individual components to be
shaped in such a way that naturally occurring electrostatic fi elds would cause
them to form bonds when they were brought together with their soul mates.
In fact, this is one step along the path toward molecular-sized robots known as
nanobots. Taken to extremes, the discipline of electronics in the future may not
involve the extreme temperatures, pressures, and noxious chemicals that are in
vogue today. Instead, electronics may simply involve “cookbook” style recipes;

Molecule Ma

Enzyme

Molecule Mb

Enzyme Molecule Mab

FIGURE 21.21
Using an enzyme to
form molecule M ab .

Alternative and Future Technologies CHAPTER 21 341

 INTERMEDIATE ELECTRONICS (AGES 12 TO 14)
SUPERCOMPUTERS 101
 Instructions for creating a micro-miniature massively parallel supercomputer*

■ Obtain a large barrel.

■ In your barrel, mix two parts water and one part each of chemicals A, B, C, …

■ Add a pinch of nanobot-mix (which you previously created in Nanobots 101).

■ Stir briskly for one hour with a large wooden spoon.

 Congratulations, you will fi nd your new supercomputers in the sediment at the bottom of

the barrel. Please keep one teaspoon of these supercomputers for your next lesson.

 *These instructions were reproduced from Bebop to the Boolean Boogie , 50th edition,

2050, the most popular electronics book in the history of the universe!

 Of course, some of this is a little far-fetched (with the hopeful exception of
the references to Bebop to the Boolean Boogie). However, for what it’s worth, the
author would bet his wife’s life savings that this type of technology will occur
one day, and also that it will be here sooner than you think!

 ONCE AGAIN, THE MIND BOGGLES
 In reality, we’ve only touched on a very few of the myriad ideas that are out
there running wild and free. For example, one area that is currently seen as a
growth industry is that of MicroElectroMechanical Systems (MEMS) and their
optical counterparts OMEMS. These refer to devices that contain both electrical,
mechanical, and—in the case of OMEMS—optical elements, and are physically
very small (sometimes measuring only a few millionths of a meter in size).
MEMS can be used to create microscopic sensors to monitor the surrounding
environment and actuators that can modify the environment with great preci-
sion, while OMEMS fi nd use in communications systems.

 As an example, in early 2001, biophysicists at the Hungarian Academy of
Sciences devised a way to create microscopic machines that are constructed and
operated by light. In one case they created gears that are each less than 1/5000
of an inch (5 μm) in diameter. The rotors spin when illuminated by a low-
power laser as photons hit their fl anges. Such devices could pump materials
across miniature chemical arrays.

for example, the notes accompanying an electronics course in 2050 AD may well
read as follows:

SECTION 2 Components and Processes342

 Small as they are, MEMS and OMEMS are still huge on the molecular scale. In
early 2001, the University of Illinois Beckman Institute for Advanced Science
and Technology reported research with organic molecules like tiny mechani-
cal switches. These molecular switches are only attached to the substrate by a
single atom and they can spin as fast as 100 trillion times a second, which pro-
vides the potential for switching arrays running at 100 terahertz!

 And just to illustrate the range of things that are being investigated, biomedi-
cal engineers at the Georgia Institute of Technology and Emory University are
working on linking electronics to living neurons to create incredibly sophisti-
cated neural networks.

 SUMMARY
 The potpourri of technologies introduced here has been offered for your delec-
tation and delight. Some of these concepts may appear to be a little on the wild
side, and you certainly should not believe everything that you read or hear. On
the other hand, you should also be careful not to close your mind, even to
seemingly wild and wacky ideas, in case something sneaks up behind you and
bites you on the ####. 27 As the Prize said in Where is Earth? by Robert Sheckley:
 “ Be admiring but avoid the fulsome, take exception to what you don’t like, but don’t
be stubbornly critical; in short, exercise moderation except where a more extreme atti-
tude is clearly called for. ”

 27 Arsek no questions!

 SECTION 3 SECTION 3
 Design Tools and Stuff

This page intentionally left blank

345

 STUFF, MORE STUFF, AND YET MORE STUFF
 Trying to explain all there is to know about the tools and techniques used to
design silicon chips, circuit boards, and electronic systems is a daunting task.
Don’t panic! It’s not that this is particularly complicated (if we’re looking at
things from a 30,000-foot viewpoint), it’s just that there are so many different
things to wrap one’s brain around.

 Another tricky aspect of all of this is that, in many cases, it would be nice
to know something about topic “ xxx ” before we introduce topic “ yyy. ”
Unfortunately, oftentimes it would also be preferable to have an understanding
of topic “ yyy ” before we consider topic “ xxx. ” As you can imagine, this poses
something of a Zen-like dilemma.

 So … the way we’re going to tackle this is that I’m going to waffl e on about all
sorts of things in whatever order seems to make sense to me (or whatever order
they pop into my head). In some cases we will refer to things we haven’t talked
about yet, but hopefully in a way that will still make sense. If all fails, I suggest
reading this chapter twice, because the second time around you’ll already know
what’s coming (if you see what I mean).

 THE ORIGINS OF EDA
 The term Electronic Design Automation (EDA) refers to the tools that are used to
design and verify integrated circuits (ICs), printed circuit boards (PCBs), and elec-
tronic systems in general.

 Prior to the 1970s, electronic circuits were handcrafted. Circuit diagrams
(known as schematics) showing symbols for the components to be used and
the connections between them were drawn using pen, paper, and stencils.
Similarly, the copper tracks on a circuit board were drawn using red and blue

 CHAPTER 22 CHAPTER 22

 General Concepts

SECTION 3 Design Tools and Stuff346

pencils or pens to represent the top and bottom of the board. Furthermore, any
form of analysis (for example, “ What frequency will this oscillator run at if I use
this capacitor and this resistor? ”) was performed with pencil, paper, and a slide
rule (or a mechanical calculator, if you were lucky). Not surprisingly, this style
of design was time-consuming, expensive, and prone to error.

 Computer-Aided Design (CAD)
 As electronic designs and devices grew more complex, it became necessary to
develop automated techniques to aid in the design process. In the early 1970s,
companies like Calma, ComputerVision, and Applicon created special com-
puter programs that helped personnel in the drafting department 1 capture
hand-drawn designs in digital form using large-scale digitizing tables.

 Over time, these early computer-aided drafting tools evolved into interactive
programs that performed integrated circuit layout (that is, they could be used
to describe the locations of the transistors forming the integrated circuit and
the connections between them). Other companies like Racal-Redac, SCI-Cards,
and Telesis created equivalent layout programs for printed circuit boards.
These integrated circuit and circuit board layout programs became known as
Computer-Aided Design (CAD) 2 tools.

 Computer-Aided Engineering (CAE)
 Also in the late 1960s and early 1970s, a number of universities and commercial
companies started to develop computer programs known as simulators. These
programs allowed students and engineers to emulate the operation of an elec-
tronic circuit without actually having to build it fi rst. Perhaps the most famous
of the early simulators was the Simulation Program with Integrated Circuit Emphasis
(SPICE). 3, 4 This was developed by the University of California in Berkeley and
was made available for widespread use around the beginning of the 1970s. SPICE
was designed to simulate the behavior of analog circuits—other programs called
logic simulators were developed to simulate the behavior of digital circuits. 5

1The drafting department is referred to as the “drawing offi ce” in the UK.
2In conversation, CAD is pronounced as a single word to rhyme with “bad.” The term CAD
is also used to refer to computer-aided design tools intended for a variety of other engineer-
ing disciplines, such as mechanical and architectural design.
3In conversation, SPICE is pronounced like the seasoning to rhyme with “mice.”
4SPICE has proved to be an enduring tool and enhanced versions of the original program
remain the mainstay of the analog design domain.
5The differences between the analog and digital domains were introduced in Chapter 1:
Analog Versus Digital.

General Concepts CHAPTER 22 347

 At the beginning of the 1980s, companies like Daisy, Mentor, and Valid
spawned computer programs that allowed engineers to capture gate-level or
transistor-level schematic (circuit) diagrams on the computer screen. These
tools could then be used to generate textual representations of the circuits
called netlists that described the components to be used and the connections
between them. In turn, these netlists could be used to drive analog and digital
simulators (and eventually layout tools).

 The companies promoting front-end tools for schematic capture and simula-
tion classed them as Computer-Aided Engineering (CAE) . 6 This was based on
the fact that these tools were targeted toward design engineers, and the CAE
companies wished to distinguish their products from the CAD tools that were
originally used by the drafting department.

 Designers Versus Engineers
 If you say things the wrong way when talking to someone in the industry, you
immediately brand yourself as an outsider (one of “ them ” instead of one of
“ us ”). For historical reasons that are based on the origins of the terms CAE and
CAD, the term design engineer or simply engineer is typically used to refer to some-
one who conceives and describes the functionality of an integrated circuit, printed
circuit board, or electronic system (what it does and how it does it). 7 By compari-
son, the term layout designer or simply designer is typically used to refer to some-
one who lays out an integrated circuit or a circuit board (determines the locations
of the components and the routes of the tracks connecting them together).

 Electronic Design Automation (EDA)
 Sometime during the 1980s, all of the CAE and CAD tools used to help design
electronic components, circuit boards, and systems came to be referred to by
the “ umbrella ” name of Electronic Design Automation (EDA) , and everyone was
happy (apart from the ones who weren’t, but they don’t count).

 AUTOMATION
 When you purchase an EDA tool and you run it, you will be presented with
a variety of menus, commands, tool bar icons, and such-like. These default

6In conversation, CAE is spelled out as “C-A-E.”
7Analog design engineers may also be referred to as circuit designers (the guys and gals who
perform analog layout are still referred to as layout designers). Meanwhile, the folks who
actually know how to design Radio Frequency (RF) and microwave circuits are so clever that
they can call themselves whatever they please.

SECTION 3 Design Tools and Stuff348

capabilities will be suffi cient for many users, but some “power users ” or
“enterprise-level-users ” may wish to add additional capabilities. In order
to accommodate this, a high-end EDA tool will come equipped with an
Application Programming Interface (API) that provides the ability to access, con-
trol, and manipulate data inside the application.

 In some cases, users (or, more typically, some engineering department in the
company for which the users work), will use such an API to add new menus
and commands to an individual tool. In other cases, the API’s associated with
multiple tools can be used to allow one tool to invoke another tool, run that
tool, read/write data from/to that tool, and so forth. Yet another scenario is
to launch one or more tools from the command line as “background jobs ”
[which means that their Graphical User Interfaces (GUIs) won’t appear on the
user’s computer screen] and have them perform a whole sequence of tasks
communicating data back and forth as required.

 The term “automation” refers to the ability for end-users to augment, custom-
ize, and drive the capabilities of electronic design and verifi cation tools by
means of a scripting language 8 and associated support utilities. (The reason-
ing behind the “automation terminology ” comes from the perspective of the
user having the ability to automate a series of actions that are available in the
application.)

 EMBEDDED SYSTEMS
 In a little while we’re going to be talking about different computer languages,
including programming languages like C and C � �. When most folks think
about a computer system, they think of the computer on their desk or perhaps
their notepad computer; and when most folks hear the term “program” they
think of things like word processors or spreadsheet applications.

 That’s not what we’re talking about here. For the purpose of this portion of our
discussions, when we talk about hardware, software, and fi rmware, we’re doing
so in the context of embedded systems .

 But what is an embedded system? Ah, I was hoping you weren’t going to ask
me that, because this is not an exactly defi ned term. Some folks say that an
embedded system is a special-purpose computer system designed to perform
one or a few dedicated tasks. This defi nition encompasses things like wash-
ing machine controllers, air conditioning controllers, and so forth. Some folks

8See also discussions on Different Languages later in this chapter.

General Concepts CHAPTER 22 349

would also consider cell phones and similar devices to be embedded systems.
One industry expert told me that that the simplest defi nition was: “a computer
without a keyboard. ” Someone else once told me that an embedded system is:
 “ one that you don’t even know is there until it stops working. ”

 So, I hope that’s cleared things up!

 PROGRAMMING VERSUS HARDWARE
DESIGN LANGUAGES
 There are a wide variety of programming languages available, but—excepting
specialist application areas—the most commonly used by far are traditional C
and its object-oriented offspring, C � �. For our purposes here, we will refer to
these collectively as C/C � � .

 By default, statements in languages like C/C � � are executed sequentially. For
example, assuming that we have already declared three integer variables called
a, b , and c , then the following statements …

 a � 6; /* Statement in C/C � � program */
 b � 2; /* Statement in C/C � � program */
 c � 9; /* Statement in C/C � � program */

 … would—perhaps not surprisingly—occur one after the other. However, this
has certain implications; for example, if we now assume that the following
statements occur sometime later in the program …

 a � b; /* Statement in C/C � � program */
 b � a; /* Statement in C/C � � program */

 … then a (which initially contained “ 6 ”) will be loaded with the value cur-
rently stored in b (which is “ 2 ”); next, b (which initially contained “ 2 ”) will be
loaded with the value currently stored in a (which is now “ 2 ”); so both a and b
will end up containing the same value.

 The sequential nature of programming languages is the way in which software
engineers think. However, hardware design engineers have quite a different
view of the world. In the case of hardware, lots of things might be happening
at the same time. Hardware engineers would describe this as “ things happening
in parallel ” or “things happening concurrently. ” As we’ve already noted, sequential
languages like C/C � � describe things happening sequentially, not in paral-
lel. Hardware design engineers need to be able to express parallel activities.
If you have a logical function like an AND or an OR with multiple inputs, for

SECTION 3 Design Tools and Stuff350

example, several of those inputs could change simultaneously, so you need
some way to be able to describe this type of situation.

 In order to address this, hardware design engineers make use of special com-
puter languages called Hardware Description Languages (HDLs). Two well-known
HDLs are called Verilog and VHDL (we’ll talk about these in more detail later).
As a simple example, let’s assume that a piece of hardware contains two multi-
bit registers called a and b that are driven by a common clock. Let’s further
assume that these registers have previously been loaded with values of 6 and 2,
respectively. Finally, let’s assume that at some point in the HDL code we see the
following statements:

 a � b; /* Statement in an HDL */
 b � a; /* Statement in an HDL */

 Note that the above syntax doesn’t actually represent VHDL or Verilog, it’s just
a generic syntax of interest only for the purposes of this example. Generally
speaking, hardware engineers would expect both of these statements to be
executed concurrently (at the same time). This means that register a (which ini-
tially contained “6”) will be loaded with the value stored in register b (which
was “2”) while—at the same time—register b (which initially contained “2”)
will be loaded with the value stored in a (which was “6”). The end result is that
the initial contents of a and b will be exchanged.

 As usual, of course, the above is something of a simplifi cation. However, it’s fair
to say that HDL statements will execute concurrently by default, unless sequen-
tial behavior is forced by certain techniques (like blocking assignments). Thus,
by default, digital logic simulators will execute the statements shown above in
this concurrent manner; similarly, logic synthesis tools will generate hardware
that handles these two activities simultaneously. By comparison, unless explic-
itly directed to do otherwise (using techniques that are beyond the scope of
these introductory discussions) C/C � � statements will execute sequentially.

 NETLISTS
 One concept that is sometimes confusing to the uninitiated is that of a “netlist.”
The best way to explain this is as follows.

 Transistor-Level
 A transistor-level netlist refers to a circuit representation at the level of individ-
ual transistors, resistors, capacitors, and inductors. Each of these items may be
equipped with a wide variety of parameters defi ning its physical and electrical

General Concepts CHAPTER 22 351

characteristics. The netlist will also specify the connections (wires) between the
various components. This type of netlist might be generated as output from
a schematic capture system, for example, and it might be used as input by an
analog simulator (we’ll talk about all of these tools in Chapters 23: Design and
Verifi cation Tools) .

 Gate-Level
 A gate-level netlist refers to a circuit representation at the level of individual logic
gates, registers, and other simple functions. The netlist will also specify the con-
nections (wires) between the various gates and functions.

 Component-Level
 A component-level netlist refers to a circuit representation at the level of individ-
ual components. For example, in the case of a Printed Circuit Board (PCB), a
component-level netlist will detail all of the integrated circuits along with dis-
crete components like resistors, capacitors, and inductors. The netlist will also
specify the connections (wires) between the various components.

 In the early days of electronic design, such netlists would be captured by hand
(or automatically generated by a tool) in the form of an ASCII 9 text fi le. More
recently, the netlist (or the elements required to describe such a netlist) might
be stored in a relational database.

 DIFFERENT LEVELS OF ABSTRACTION
 The functionality of an electronic circuit can be represented at different
levels of abstraction; also, different Hardware Description Languages (HDLs)
support these levels of abstraction to a greater or lesser extent as illustrated in
Figure 22.1 (the languages referred to in this fi gure are discussed in more detail
in the following topic).

 Note that these levels really aren’t “ offi cially ” defi ned, per se; different folks
will think about these things differently. Also, the list of languages isn’t exhaus-
tive (I’ve omitted some of the analog HDLs because they didn’t really fi t into

9Towards the end of the 1950s, the American Standards Association (ASA) began to consider
the problem of defi ning a standard character code mapping that could be used to facilitate the
representation, storing, and interchanging of textual data between different computers and
peripheral devices. In 1963, the ASA—which changed its name to the American National
Standards Institute (ANSI) in 1969—announced the fi rst version of the American Standard
Code for Information Interchange (ASCII).

SECTION 3 Design Tools and Stuff352

this picture). And, while we’re in the “weasel words, ” we should probably note
that the various languages aren’t always as tightly associated with the various
levels of abstraction as this fi gure might indicate. For example, although you
can use SystemVerilog and VHDL to represent gate-level netlists, the result is a
bit cumbersome, and EDIF is better. Similarly, although you can use SystemC
to create RTL representations, you really don’t want to if you’re given a choice.

 Transistor-Level
 The lowest level of abstraction (as far as we’re concerned for the purposes
of these discussions) is a transistor-level netlist, which comprises transistors,
resistors, capacitors, inductors, and the connections between them. The most
popular language for this is SPICE, which refers to both the netlist language
and the corresponding analog simulation capability.

 It is common to refer to a SPICE netlist as a “SPICE Deck, ” which is a hang-
over from the days when this data was stored on punched cards (i.e., “a deck of
cards”). Also, some versions of the SPICE simulator had a user interface called
Nutmeg, for no other reason than the fact that nutmeg is a spice. (Oh, how we
laughed.)

 Switch-Level
 The lowest level of abstraction with regard to the digital domain is a switch-
level netlist, in which a circuit is represented as a network of Field-Effect
Transistors (FETs). A corresponding switch-level simulator would model each
transistor as being “open,” “closed,” and “unknown ” and each node (wire) as
being 0, 1, and X (unknown).

RTL and
Boolean

Loops and
Processes

Structural

Functional

Behavioral

Gate-level

Switch-level

Transistor-level

Complex
“Stuff”

Algorithmic

SPICE

Special languages

EDIF, Verilog, SystemVerilog, VHDL

Verilog, SystemVerilog, VHDL, SystemC

SystemC, Verilog, SystemVerilog, VHDL,
Bluespec SystemVerilog (BSV)

M-Code, C/C++, SystemC,
Bluespec SystemVerilog (BSV)

FIGURE 22.1
Different levels of abstraction and associated HDLs.

General Concepts CHAPTER 22 353

 Gate-Level
 A slightly higher level of digital abstraction would be the gate level, which
refers to describing the circuit as a netlist of primitive logic gates, registers, and
other simple functions. Although languages like Verilog and VHDL can be used
to represent gate-level netlists, it is more common to do so in a neutral lan-
guage called EDIF (Electronic Design Interchange Format) .

 Structural
 Transistor-, switch-, and gate-level representations may be classed as being
structural because they capture the structure of the circuit. It should be noted,
however, that the term “ structural ” can have different connotations, because
it may also be used to refer to a hierarchical block-level netlist in which each
block may have its contents specifi ed using any of the levels of abstraction
shown in Figure 22.1 .

 Functional (Boolean, RTL)
 The next level of HDL sophistication is the ability to support functional
representations, which covers a range of constructs. In the digital domain, we
might start with the ability to describe a function using Boolean equations.
For example, assuming that we had already declared a set of signals called y ,
select, dataA, and dataB, we could capture the functionality of a simple 2:1
multiplexer using the following Boolean equation:

 y � (select & dataA) | (!SELECT & dataB);

 Note that this is a generic syntax that does not favor any particular HDL and is
used only for the purposes of this example. The functional level of abstraction
also encompasses representations at the Register Transfer Level (RTL). The term
“ RTL ” covers a multitude of manifestations, but the easiest way to wrap one’s
brain around the underlying concept is to consider a design formed from a collec-
tion of registers linked by combinational logic. These registers are often controlled
by a common clock signal, so assuming that we had already declared two signals
called clock and control along with a set of registers called regA, regB, regC, and
regD, then an RTL-type statement might look something like the following:

 When clock Rises
 If control � � 1
 Then regA � regB & regC;

 else regA � regB | regD;
 End If;

 End When;

SECTION 3 Design Tools and Stuff354

 In this case, symbols like When, Rises, If, Then, Else, etc. are keywords whose
semantics are defi ned by the owners of the HDL. Once again, this is a generic
syntax that does not favor any particular HDL and is used only for the purposes
of this example.

 Behavioral
 The highest level of abstraction sported by traditional HDLs is known as
behavioral, which refers to the ability to describe the behavior of a circuit
using abstract constructs like loops and processes. This also encompasses using
algorithmic elements like adders and multipliers in equations.

 Algorithmic
 This refers to the ability to represent extremely complex data structures and
algorithmic operations. In the case of M-Code, 10 for example, it’s possible to
represent a complex transformation such as a matrix inversion in a single line
of code.

 DIFFERENT LANGUAGES
 As I ponder how to present this, I realize that it might be a little scary to see all
of the following languages for the fi rst time. The point is that very few engineers
would be familiar with all of these little rascals; software developers will work
with programming languages; hardware design engineers will use one or more
of the Hardware Description Languages (HDLs); verifi cation engineers will be con-
versant with one of the formal verifi cation languages; and so forth. The follow-
ing provides a very brief introduction to some of the more prevalent languages:

 Programming Languages
 System programming languages such as C, C � �, and Java™ are designed to
allow programmers to build data structures, algorithms, and—ultimately—
applications from the ground up. These languages are said to be “strongly
typed,” which means that all constants and variables used in a program must
be associated with a specifi c data type (such as Boolean, integer, real, character,
string, etc.) that are predefi ned as part of the language. Furthermore, certain
operations may be allowable only with certain types of data.

 In the case of embedded systems, it’s not uncommon for software developers
to use assembly language for performance-critical functions; for example, the

10M-Code is the language used by MATLAB® from The Mathworks.

General Concepts CHAPTER 22 355

bulk of a Digital Signal Programming (DSP) algorithm intended to be run on a
special-purpose Digital Signal Processor (DSP) may be created in C/C � �, but
one or more core functions may be implemented in assembly language.

 Scripting Languages
 Unlike programming languages, scripting languages are not intended to be
used to build applications (such as EDA tools) from scratch; instead (in the
case of automation applications) they assume that a collection of useful “com-
ponents ” already exist, where these components are typically created using a
system programming language. Scripting languages are used to connect—or
 “ glue ” —these components together, so they are sometimes referred to as glue
languages or system integration languages .

 Scripting languages are typically type-less; for example, a variable can hold an
integer one moment, then a real, and then a string, because this makes it easier
for them to connect components together. It also speeds the process of script
development. Furthermore, code and data are often interchangeable, which
means one script can write another script on-the-fl y and then execute it.

 Scripting languages are often used to perform a series of actions over and over
again; hence, their name, which comes from the concept of a written script for
a stage play, where the same words and actions are performed identically for
each performance.

 Possibly the fi rst scripting language was Perl, which was presented to the world
in 1987. Perl, which stands for Practical Extraction and Report Language, is
an interpreted language that is optimized for scanning arbitrary text fi les,
extracting information from those text fi les, and printing reports based on that
information (it’s also useful for a wide variety of system management tasks).

 Today, there are a number of widely used scripting languages, including JScript
(short for Java Script), Perl, Python, Tcl (pronounced “ tickle ”), and VBScript or
VBS (short for Visual Basic Script).

 Hardware Description Languages (Digital)
 Life would be so simple if there were only a single HDL to worry about, but
no one said that living was going to be easy. In the early days of electronics
design (circa the 1970s), anyone who created an HDL-based design tool typi-
cally felt moved to create their own language to accompany it. Not surprisingly,
the result was a morass of confusion (you had to be there to fully appreciate
the dreadfulness of the situation). What was needed was an industry-standard

SECTION 3 Design Tools and Stuff356

HDL that could be used by multiple EDA tools and vendors, but where was
such a gem to be found?

 VHDL: In 1980, the U.S. Department of Defense (DoD) launched the Very High
Speed Integrated Circuit (VHSIC) program, whose primary objective was to
advance the state-of-the-art in digital integrated circuit technology. As part of
this, a project to develop a new hardware description/documentation language
called VHSIC HDL (or VHDL for short) was launched in 1981. As a language,
VHDL is very strong at the functional (Boolean Equation and RTL) and behav-
ioral levels of abstraction and it also supports some system-level/algorithmic
design constructs. However, VHDL is a little weak when it comes to the struc-
tural (switch and gate) level of abstraction, especially with regard to its delay
modeling capability.

 Verilog: Sometime around the mid-1980s, Phil Moorby (one of the original
members of the team who created the famous HILO logic simulator) designed
a new HDL called Verilog, which was reasonably strong at the gate-level of
abstraction (especially with regard to delay modeling capability); very strong at
the functional (Boolean Equation and RTL) level of abstraction; and also sup-
ported some behavioral constructs. In 1990, Verilog was placed in the public
domain, which prompted a lot of EDA and design companies to start using
Verilog as their language of choice. Having a single design representation that
could be used by simulation, synthesis, and other tools made everyone’s lives
a lot easier. It is important to remember, however, that Verilog was originally
conceived with simulation in mind; applications like synthesis were something
of an afterthought. This means that, when creating a Verilog representation to
be used for both simulation and synthesis, one is restricted to using a synthe-
sizable subset of the language (which is loosely defi ned as whatever collection
of language constructs your particular logic synthesis package understands and
supports).

 UDL/I: As we just noted, Verilog was originally designed with simulation in
mind. Similarly, VHDL was created as a design documentation and speci-
fi cation language, without simulation or synthesis really being taken into
account. The end result is that one can use both of these languages to describe
constructs that can be simulated but not synthesized. In order to address these
problems, the Japan Electronic Industry Development Association (JEIDA) intro-
duced their own HDL called the Unifi ed Design Language for Integrated Circuits
(UDL/I) in 1990. The key advantage of UDL/I was that it was designed from
the ground up with both simulation and synthesis in mind. The UDL/I envi-
ronment includes a simulator and a synthesis tool, and is available for free

General Concepts CHAPTER 22 357

(including the source code). However, by the time UDL/I arrived on the scene,
Verilog and VHDL already held the high ground, and this language never really
managed to attract much interest outside of Japan.

 Superlog and SystemVerilog: In 1997, things started to get complicated,
because that’s when a company called Co-Design Automation was formed.
Working furiously, the folks at Co-Design developed a “Verilog on Steroids ”
called Superlog. The two main problems with Superlog were (a) it was essen-
tially a proprietary language, and (b) it was so much more sophisticated than
Verilog that getting other EDA vendors to enhance their tools to support it
would have been a major feat.

 In the summer of 2002, a standards organization called Accellera released the
specifi cation for a hybrid language called SystemVerilog 3.0 (don’t even ask
me about 1.0 and 2.0). The great advantage to this language was that it was
an incremental enhancement to the existing Verilog rather than the death-
defying leap represented by a full-up Superlog implementation (having said
this, SystemVerilog 3.0 featured many of Superlog’s language constructs, which
were donated by Co-Design).

 Bluespec SystemVerilog: Created by a company called Bluespec (surprise),
Bluespec SystemVerilog (BSV) was introduced in 2004. Just as the C lan-
guage provides a higher level of abstraction than assembly language for soft-
ware design, BSV provides a higher level of abstraction than RTL (as offered
by VHDL, Verilog, and SystemVerilog) for hardware design. Hardware design is
about concurrency, or parallel behavior. One of the biggest challenges of hard-
ware design is properly expressing and coordinating where parallel behaviors
intersect. BSV has extended SystemVerilog to simplify both the management of
these intersecting parallel behaviors and the description of hardware structures.
From a high-level description of hardware, BSV is compiled into Verilog RTL
for integration into the rest of a hardware design fl ow. BSV is general-purpose,
and is used for the modeling, verifi cation, and implementation of hardware.

 SystemC: And then we have SystemC, which some design engineers love and
others hate with a passion. One big argument for SystemC is that it provides a
more natural environment for hardware/software co-design and co-verifi cation.
One big argument against it is that the majority of hardware design engineers
are very familiar with Verilog and/or VHDL, but they are not familiar with
the object-orientated aspects of SystemC. Another consideration is that
the majority of today’s synthesis offerings represent hundreds of engineer
years of development in translating Verilog or VHDL into gate-level netlists.

SECTION 3 Design Tools and Stuff358

By comparison, there are far fewer SystemC-based synthesis tools, and those
that are available tend to be somewhat less sophisticated than their more tra-
ditional counterparts. In reality, SystemC is more applicable to a system-level
versus an RTL design environment. It also fi nds a lot of use in the verifi cation
domain.

 Hardware Description Languages (Analog)
 The language you use depends on where you are and what you’re trying to
do. For example, to hold a conversation in most of San Francisco, you would
typically speak English—but if you want to get a good bargain in the
Chinatown area you’ll be much better off holding forth in Chinese.

 Similarly, analog circuits are very different in character to their digital cousins,
so engineers use special analog hardware description languages (AHDLs) to
describe them. One of the most widely used AHDLs is SPICE, which is named
after the simulator. This allows engineers to represent designs at a low level of
abstraction as transistor-capacitor-resistor-inductor netlists. Over time, SPICE
has been joined by a number of new AHDLs that can represent circuits at
higher levels of abstraction. These include ongoing analog extensions to VHDL
and Verilog: VHDL-AMS (analog mixed-signal), Verilog-A (analog), and Verilog
AMS (analog mixed-signal).

 Verifi cation Languages (General)
 Many folks consider SystemC to be a verifi cation language, because it can be
used to create and control sophisticated test sequences. It’s also of use in creat-
ing high-level representations called Transaction-Level Models (TLMs).

 Perhaps the most sophisticated of the Hardware Verifi cation Languages (HVLs)
is the aspect-oriented e, which was developed by Verisity, which was in turn
acquired by Cadence. In case you were wondering, e doesn’t actually stand for
anything now, but originally it was intended to refl ect the idea of “English-like”
in that it has a natural language feel to it. We can think of e as a blend of C
and Verilog with a hint of Pascal; it can be used to declare valid ranges and
sequences of input values (along with their invalid counterparts) and high-
level verifi cation strategies. The e description is then used by an appropriate
verifi cation environment to guide simulations.

 Verifi cation Languages (Formal)
 This is where things could start to get really confusing if we’re not careful (so
let’s be careful). We’ll start with something called Vera®, which began life with

General Concepts CHAPTER 22 359

work done at Sun Microsystems in early 1990s. It was eventually acquired by
Synopsys in 1998. Vera is essentially an entire verifi cation environment, simi-
lar to the e verifi cation language/environment. Vera encapsulates testbench
features and assertion-based capabilities, and Synopsys promoted it as a stand-
alone product (with integration into the Synopsys logic simulator). Sometime
later, due to popular demand, Synopsys opened things up to for third-party use
by making OpenVera™ and OpenVera Assertions (OVA) available.

 Somewhere around this time, SystemVerilog was equipped with its fi rst-pass
at an “assert ” statement. Meanwhile, due to the increasing interest in formal
verifi cation technology, 11 one of the Accellera standards committees started to
look around for a formal verifi cation language they could adopt as an industry
standard. A number of languages were evaluated (including OVA), but in 2002
the committee eventually opted for the Sugar language from IBM. Just to add
to the fun and frivolity, Synopsys then donated OVA to the Accellera committee
in charge of SystemVerilog (this was a different committee to the one evaluating
formal property languages).

 Yet another Accellera committee ended up in charge of something called the
Open Verifi cation Library (OVL) , which refers to a library of assertion/property
models available in both VHDL and Verilog.

 So now we have the assert statements in VHDL and SystemVerilog, OVL (the
library of models), OVA (the assertion language), and the Property Specifi cation
Language (PSL), which is the Accellera version of IBM’s Sugar language. The
advantage of PSL is that it has a life of its own in that it can be used indepen-
dently to the languages used to represent the functionality of the design itself.
The disadvantage is that it doesn’t look like anything the hardware description
languages design engineers are familiar with, such as VHDL, Verilog, C/C � � ,
etc. There is some talk of spawning various fl avors of PSL, such as a VHDL PSL,
a Verilog PSL, a SystemC PSL, and so forth; the syntax would differ between
these fl avors so as to match the target language, but their semantics would be
identical.

 ELECTRONIC SYSTEM LEVEL (ESL)
 ESL is one of those terms that are very hard to pin down. To some folks, ESL
means designing at a high level of abstraction, prior to making any hardware/
software portioning decisions. To others, ESL means hardware/software codesign.

11Formal Verifi cation is introduced in Chapter 23: Design and Verifi cation Tools.

SECTION 3 Design Tools and Stuff360

And others would say that ESL refers to anything that’s at a higher level of
abstraction than Register Transfer Level (RTL) representations.

 For example, some folks would say that C/C � � to RTL synthesis tools fall
fi rmly in the ESL category. There are also a number of companies who take
C/C � � algorithms and programs, analyze them, and then generate hardware
accelerators and/or coprocessors.

 And, of course, ESL can apply to both design and verifi cation applications.
A really good example of the latter is the concept of sequential equivalence
checking, which allows you to compare the sequential behavior of different
implementations of your design (such as two RTL representations with differ-
ent numbers of pipeline stages) so as to ensure that their overall functionality
is the same.

 And there are always new tools popping up claiming to be ESL. In many cases
it’s hard to say one way or the other, so my “rule of thumb ” is that if such a
tool (a) speeds the design of complex systems and/or (b) makes my life easier,
then I’m prepared to give it the benefi t of the doubt.

361

 WEASEL WORDS
 Before we dive headfi rst into the mire, let’s start with a few “weasel words. ” 1 The
point is that there are a multifarious multitude of tools used for the design and
verifi cation of electronic systems. Introducing only the main contenders in any
level of depth would require a book in its own right, so we’re going to restrict
ourselves to saying a cheery “ Hello ” to just a few of the usual suspects …

 DESIGN CAPTURE
 In the days before computer-aided design and verifi cation tools, analog design
engineers captured their designs as hand-drawn transistor-level schematics.
Similarly, digital design engineers captured their gate-level schematics by hand
using a pencil and paper. In those days of yore, functional verifi cation (check-
ing that your circuit would do what you wanted it to do) involved a gathering
of you and your colleagues, where you “ walked-and-talked ” them through your
schematics explaining what the various “ things ” did (or were supposed to do),
and—hopefully—everyone saying: “ Yes, that looks good to us . ”

 Transistor-Level and Gate-Level Netlists
 Now, when you’re creating pencil-and-paper schematics, it’s easy to make triv-
ial mistakes, like calling two different wires by the same name (this is especially
true if several guys and gals are working on different parts of the circuit). Thus,
sometime around the 1970s, folks started to create simple computer-aided

 CHAPTER 23 CHAPTER 23

 Design and
Verifi cation Tools

 1 We should always remember the saying: “Eagles may soar, but weasels rarely get sucked into jet
engines! ”
 2 The concept of netlists was introduced in Chapter 22: General Concepts.

SECTION 3 Design Tools and Stuff362

tools that could read a text fi le containing a netlist 2 and perform simple checks,
such as checking that transistors were connected the right way round (in the
case of a transistor level netlist) or that you didn’t have two logic gates driving
the same wire (in the case of a gate-level netlist; Figure 23.1).

Text File

BEGIN CIRCUIT=TEST
 INPUT SET_A, SET-B,

 DATA, CLOCK,
 CLEAR_A, CLEAR_B;
 OUTPUT Q, N_Q;
 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,
IN2=SET_B,
OUT1=SET);

 GATE G2=NOT (IN1=DATA,
OUT1=N_DATA);

 GATE G3=OR (IN1=CLEAR_A,
IN2=CLEAR_B,
OUT1=CLEAR);

 GATE G4=OFF (IN1=SET, IN2=N_DATA,
IN3=CLOCK, IN4=CLEAR,
OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

FIGURE 23.1
Example of a simple gate-level netlist.

 These netlists could also be used by appropriate analog or digital simulators
and timing analysis tools as these applications became available (these tools
are discussed later in this chapter).

 Schematic Capture
 So, tools existed that could read text fi les containing netlists and do useful
things with them. At this stage, however, the design engineers were still draw-
ing their schematics with pencil-and-paper. They would then use these sche-
matics as the basis for hand-creating the corresponding netlist using a simple
text editor.

 As you can imagine, in addition to being time-consuming and boring, hand-
transcribing a netlist is prone to error. Not surprisingly, therefore, the next
step was to create rudimentary schematic capture packages that allowed users
to select items from a library of graphical component symbols, place these
symbols on the screen and move them around as required, and connect them
together using graphical wires. The schematic capture package could then be
used to automatically generate a corresponding netlist (Figure 23.2).

Design and Verifi cation Tools CHAPTER 23 363

 Higher Levels of Abstraction
 On the digital side of the fence, folks started to capture designs at a higher level
of abstraction using Hardware Description Languages (HDLs) to describe things
at the Register Transfer Level (RTL). 3 The fi rst such HDLs were proprietary; later
the industry adopted standard languages such as Verilog and VHDL.

 It’s interesting to note that the use of higher levels of abstraction like RTL pre-
dates logic synthesis technology (as discussed below). Their attraction lay in the
fact that engineers could use them to capture the design’s functionality quickly
and concisely, and also that these representations simulated much faster than
their gate-level counterparts.

 Graphical Design Entry Lives On
 When the fi rst HDL-based fl ows appeared on the scene, many folks assumed
that graphical design entry and visualization tools (such as schematic
capture systems) were poised to exit the stage forever. Indeed, for some time,
design engineers prided themselves on using text editors like VI (from “ Visual
Interface ”) or EMACS as their only design entry mechanism.

 But “a picture is worth a thousand words ” as they say, and graphical entry
techniques remain popular at a variety of levels. For example, it is extremely com-
mon to use a block-level schematic editor to capture the design as a collection

Netlist
Schematic
capture

BEGIN CIRCUIT=TEST
 INPUT SET_A, SET-B,

 DATA, CLOCK,
 CLEAR_A, CLEAR_B;
 OUTPUT Q, N_Q;
 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,
IN2=SET_B,
OUT1=SET);

 GATE G2=NOT (IN1=DATA,
OUT1=N_DATA);

 GATE G3=OR (IN1=CLEAR_A,
IN2=CLEAR_B,
OUT1=CLEAR);

 GATE G4=OFF (IN1=SET, IN2=N_DATA,
IN3=CLOCK, IN4=CLEAR,
OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

FIGURE 23.2
Using schematic capture to generate a netlist.

 3 See also the discussions on HDLs and different levels of abstraction like RTL in Chapter 22:
General Concepts .

SECTION 3 Design Tools and Stuff364

of high-level blocks that are connected together. The system might then be used
to automatically create a skeleton HDL framework with all of the block names
and inputs and outputs declared. Alternatively, the user might create a skeleton
framework in HDL, and the system might use this to automatically create a
block-level schematic (Figure 23.3).

Graphical State Diagram

Graphical Flowchart

When clock rises
 If (s == 0)
 then y = (a & b) | c;
 else y = c & !(d ^ e);

Textual HDL

Top-level
block-level
schematic

Block-level schematic

FIGURE 23.3
 Mixed-level design capture environment.

 From the users ’ viewpoint, “pushing” down into one of these schematic
blocks might automatically open an HDL editor. This could be a pure text-
and-command-based editor like VI, or it might be a more sophisticated
HDL-specifi c editor featuring the ability to show language keywords in differ-
ent colors, automatically complete statements, and so forth.

 Furthermore, when “pushing” down into a schematic block, modern design
systems often give you a choice between entering and viewing the contents
of that block as another, lower-level block-level schematic, raw HDL code, a
graphical state diagram (used to represent a fi nite state machine), a graphical
fl owchart, and so forth. In the case of the graphical representations like state
diagrams and fl owcharts, these can subsequently be used to automatically
generate their RTL equivalents in the HDL of your choice.

 FUNCTIONAL VERIFICATION (SIMULATION)
 The idea behind simulation is to create a mathematical model of whatever
electronic circuit you are designing. This model, which accurately represents

Design and Verifi cation Tools CHAPTER 23 365

the function and timing of the various components forming the circuit, is con-
structed in the computer’s memory. You then create a testbench, which defi nes
the stimulus to be applied to the circuit’s inputs and the responses you expect
to see at the circuit’s outputs. The simulator then applies this stimulus and
models the ensuing effects as they propagate through the circuit.

 In the case of an analog circuit, the transistor-level netlist would be read into
an analog simulator such as SPICE, and the input stimulus might be presented
in the form of constantly varying signals such as sine waves. By comparison, in
the case of a digital simulator, the models could be represented at the gate-level
and/or as RTL functions, and the stimulus would be defi ned in digital terms
such as binary patterns of 0 s and 1 s.

 FORMAL VERIFICATION
 In the not-so-distant past, the term formal verifi cation was considered to be
synonymous with equivalency checking for the majority of design engineers. In
this context, an equivalency checker is a tool that uses formal (rigorous math-
ematical) techniques to compare two different representations of a design—say
an RTL description with a gate-level netlist—to determine whether or not they
have the same input to output functionality.

 In fact, equivalency checking may be considered to form a subclass of formal
verifi cation called model checking, which refers to techniques used to explore
the state-space of a system to test whether or not certain properties—typically
specifi ed in the form of “assertions ” —are true.

 But just what is formal verifi cation and why is it so cool? Well, in order to pro-
vide a starting point for our discussions, let’s assume we have a design com-
prising a number of sub-blocks, and that we are currently working with one of
these blocks whose role in life is to perform some specifi c function. In addi-
tion to the Hardware Description Language (HDL) representation that defi nes
the functionality of this block, we can also associate one or more assertions/
properties with that block (these assertions/properties may be associated
with signals at the interface to the block and/or with signals and registers, etc.
internal to the block).

 A very simple assertion/property might be along the lines of “ Signals A and
B should never be active (low) at the same time . ” But these statements can also
extend to extremely complex temporal and transaction-level constructs, such
as “ When an XYZ write command is received, then a memory write command of type
PQR must be issued within 5 to 36 clock cycles. ”

SECTION 3 Design Tools and Stuff366

 Thus, assertions/properties allow you to describe the behavior of a time-
based system in a formal and rigorous manner that provides an unambiguous
and universal representation of the design’s intent (try saying that quickly).
Furthermore, assertions/properties can be used to describe both expected and
prohibited behavior.

 The fact that assertions/properties are both human and machine-readable
makes them ideal for capturing an executable specifi cation, but they go far
beyond this. Let’s return to considering a very simple assertion/property such
as “Signals A and B should never be active (low) at the same time . ” One term
you will hear a lot of is Assertion-Based Verifi cation (ABV), which comes in two
fl avors: static formal verifi cation and dynamic formal verifi cation .

 In the case of static formal verifi cation, an appropriate tool reads in the func-
tional description of the design (typically at the RTL level of abstraction) and
then exhaustively analyzes the logic to ensure that this particular condition
can never occur. By comparison, in the case of dynamic formal verifi cation,
an appropriately augmented logic simulator (or post-simulation analyzer and
debugger) will fl ag a warning if this particular condition ever does occur.

 LOGIC SYNTHESIS
 Toward the end of the 1980s, Logic (RTL) Synthesis tools started to appear for
use in digital integrated circuit design. The idea here is that the design engi-
neers capture the desired functionality of the system in RTL, and the synthesis
program then automatically converts the RTL representation into a correspond-
ing gate-level netlist. The engineers can direct the synthesis tool to optimize
different portions of designs for area (to use the smallest amount of real-estate
on the silicon), or for speed.

 The original logic synthesis tools didn’t know anything about the physi-
cal aspects of the integrated circuits for which they were generating netlists.
By comparison, today’s physical synthesis tools actually place the gates close to
where they will fi nally be located and then use these placements to derive more
accurate timing estimations.

 Furthermore, these modern tools can be provided with (or can automatically
generate) a high-level “fl oorplan, ” which describes where the main functional
blocks will be placed in relation to each other. By means of the fl oorplan, the
synthesis tool can more accurately predict the timing characteristics of the inte-
grated circuit. In turn, this allows the synthesis tool to generate a gate-level
netlist that better meets the design goals.

Design and Verifi cation Tools CHAPTER 23 367

 Following synthesis, the engineers (or a separate verifi cation team) may re-simulate
the design at the gate level using the same testbench as before. This simulation
is performed to ensure that the synthesis tool didn’t inadvertently change the
functionality of the design. In addition to simulation, the engineers may run
a formal verifi cation program called an equivalency checker (see previous topic)
that compares the RTL and gate-level views of the design to ensure that they are
functionally equivalent. (Synthesis tools have been known to make mistakes.)

 LAYOUT (PLACE-AND-ROUTE)
 In the case of analog designs at the chip or board level, almost all aspects of
layout are performed by hand. Having said this, at the time of this writing,
we are seeing some interesting developments with regard to automatic analog
placement at the chip level.

 In the case of digital circuit board designs, the design engineers create a
component-level schematic and attach certain constraints to it, such as “ these
two wires must be of matched length ” or “ these two wires should be implemented as a
differential pair. ” This schematic is then passed to the layout designers …

 Perhaps surprisingly, there is little automation in the initial phases of laying
out a circuit board. First of all the layout designer has to defi ne the outline
of the board (not all boards are rectangular or square; some can have very inter-
esting shapes). The layout tool then reads in the data from the schematic data-
base and presents the collection of components outside the board’s outline.
The layout designer then places (drags-and-drops) the various components by
hand (most layout tools purport to have the ability to perform automatic place-
ment, but the results are always so bad that designers never use these features).

 Following placement, the layout tool can be used to perform auto-interactive
routing. This part of the process is really very successful; the tool can usually
perform 80% of the routing automatically, leaving the layout designer to guide
it for the remaining 20%.

 The most successful form of automated place-and-route is seen when creating
digital integrated circuits. These tools can automatically place tens of millions
of logic gates and route tens of millions of wires connecting them.

 PARASITIC EXTRACTION
 Each wire and via on an integrated circuit or a circuit board has its own physi-
cal characteristics (in terms of resistance, capacitance, and inductance) that will
affect the way in which signals behave.

SECTION 3 Design Tools and Stuff368

 Thus, once all of the components (integrated circuits and discrete components
on a board; transistors, resistors, capacitors, etc., on an analog chip; logic gates
and functions on a digital chip) have been placed and all of the tracks have
been routed, engineers run a parasitic extraction program to determine charac-
teristics like resistance, capacitance, and inductance associated with each track
segment and via. These values will subsequently be used by timing analysis
programs as discussed in the next topic.

 TIMING ANALYSIS
 Timing analysis is run and rerun throughout the design process. Initially, esti-
mated values are used for the various gate and track (wire and via) delays. As
more data becomes available, the timing analysis models become more accu-
rate and more sophisticated. Following place-and-route, a parasitic extraction
tool is used to determine the resistance, capacitance, and inductance values
associated with the tracks and vias. These values are then used to further refi ne
the delay models so as to provide extremely accurate timing analysis capability.

 Static Timing Analysis (STA)
 In the case of digital designs, the most common form of timing verifi cation in
use today is classed as Static Timing Analysis (STA). Conceptually this is quite
simple, although in practice things are—as usual—more complex than they
might fi rst appear.

 The timing analyzer essentially sums all of the gate and track delays forming
each path through the circuit to give you total input-to-output for each path.
(In the case of pipelined designs, the analyzer calculates delays from one bank
of registers to the next.)

 Prior to place-and-route, the analyzer may make estimations as to track delays.
Following place-and-route, the analyzer will employ extracted parasitic values
(for resistance, capacitance, and inductance) associated with the physical tracks
to provide more accurate results. The analyzer will report any paths that fail to
meet their original timing constraints, and it will also warn of potential tim-
ing problems (e.g., setup and hold violations) associated with signals being
presented to the inputs of registers.

 Static timing analysis is particularly well suited to classical synchronous designs
and pipelined architectures. The main advantages of static timing analysis are
that it is relatively fast, it doesn’t require a testbench, and it exhaustively tests
every possible path into the ground. On the other hand, static timing analyzers

Design and Verifi cation Tools CHAPTER 23 369

are little rascals when it comes to detecting “false paths ” that will never be
exercised during the course of the design’s normal operation. Also, these tools
aren’t at their best with designs employing latches, asynchronous circuits, and
combinatorial feedback loops.

 Statistical Static Timing Analysis (SSTA)
 STA is a mainstay of modern digital design fl ows, but it’s starting to run into
problems with the latest process technology nodes. At the time of writing the
45/40-nano nodes are coming online, with the 32-nano node racing towards us.

 In the case of modern silicon chips, interconnect delays dominate over logic
delays. In turn, interconnect delays are dependent on parasitic capacitance,
resistance, and inductance values, which are themselves functions of the topology
and cross-sectional shape of the wires.

 The problem is that, in the case of the latest technology process nodes, photo-
lithographic processes are no longer capable of producing exact shapes. Thus,
as opposed to working with squares and rectangles, we are now working with
circles and ellipsoids. Feature sizes like the widths of tracks are now so small,
that small variations in the etching process cause deviations that—although
slight—are signifi cant with relation to the main feature size. These irregulari-
ties are made more signifi cant by the fact that—in the case of high-frequency
designs—the so-called “ skin-effect ” comes into play; this refers to the fact that
high-frequency signals travel only through the outer surface, or skin, of the
conductor. Furthermore, there are variations in the vertical plane of the track’s
cross-section caused by processes like Chemical Mechanical Polishing (CMP).

 The overall result is that it’s becoming increasingly diffi cult to accurately cal-
culate track delays. Of course, it is possible to use the traditional engineering
fallback of guard-banding (using worst-case estimations), but excessively conser-
vative design practices result in device performance that is signifi cantly below
the silicon’s full potential, which is an extremely unattractive option in today’s
highly competitive marketplace. In fact, the effects of geometry variations are
causing the probability distributions of delays to become so wide that worst-
case numbers may actually be slower than in an earlier process technology!

 One solution is the concept of Statistical Static Timing Analysis (SSTA). This is
based on generating a probability function for the delay associated with each sig-
nal for each segment of a track, then evaluating the total delay probability func-
tions of signals as they propagate through entire paths. Similar statistical based
tools are starting to appear for other forms of analysis, such as power analysis.

SECTION 3 Design Tools and Stuff370

 DESIGN FOR MANUFACTURABILITY (DFT)
 Consider a highly simplifi ed view of the silicon chip design fl ow, as illustrated
in Figure 23.4 . First, the designer captures the RTL that represents the function-
ality of the design. The RTL is then synthesized into a gate-level netlist (this will
also include instantiations of hard cores from an IP macro library). Following
place-and-route, the output from the design phase is a GDSII fi le, which is
subsequently handed over to manufacturing.

GDSII
To

manufacturing
Capture

RTL
Place-and-

Route
Synthesis

FIGURE 23.4
Generic design fl ow.

 The problem is that the GDSII fi le generated by the design phase contains
 “ ideal” geometric shapes. However, the wavelength of the light used to image
the chip is larger than the structures that are being created in these sub-
wavelength processes. This means that the ideal shapes in the original GDSII
fi le will not print as required. Thus, part of the manufacturing process is to
manipulate the GDSII fi le with a variety of Resolution Enhancement Techniques
(RET), such as Optical Proximity Correction (OPC) and Phase Shift Mask (PSM).

 The problem is that when these tasks are performed downstream in manufactur-
ing, the tools that modify the design to make it manufacturable do so without
understanding the design intent, so they may negatively impact things like
power consumption and performance.

 The solution is a variety of tools that fall under the umbrella name of Design
for Manufacturability (DFM). The “D ” for “Design” is important here, because
it means bringing manufacturability analysis upstream into the design phase.
One DFM scenario is to perform a full-chip analysis of the GDSII and to aug-
ment it with “suggestions” that can be used to guide the downstream manufac-
turing tools, as illustrated in Figure 23.5 .

 Another scenario is to perform a full-chip analysis of the GDSII looking for
 “ hot-spots, ” and to use these results to guide the place-and-route engines to
modify the physical implementation, as illustrated in Figure 23.6 .

 In the future, it may be that the place-and-route engines are augmented to
perform DFM tasks “on-the-fl y. ” For example, every time the placer places

Design and Verifi cation Tools CHAPTER 23 371

a component or the router routes a track, they will check to see if there are
any manufacturability issues and—if so—they will modify their decisions
appropriately.

 AND SO MUCH MORE . . .
 Oh, there’s so much more we could talk about. The following offers a glimpse
of a few of the other tools one might run across.

 Schematic Synthesis
 After an RTL representation of a digital design has been processed by a logic
synthesis tool and turned into a gate-level netlist, another program called
schematic synthesis can be used to take the netlist and automatically generate a
gate-level schematic diagram. This graphical representation contains exactly the
same information as the netlist, but it can be much easier to understand and to
work with.

 Analog Synthesis
 In certain respects, analog circuits are signifi cantly more complex than their
digital counterparts. As a result, there really aren’t any special tools that can

GDSII

GDSII+
To

manufacturing

Capture
RTL

Place-and-
Route

Synthesis

FIGURE 23.5
Preprocessing the GDSII before handing it over to manufacturing.

GDSII
To

manufacturing
Capture

RTL
Place-and-

Route
Synthesis

FIGURE 23.6
Analyzing the GDSII and using the results to modify the physical implementation.

SECTION 3 Design Tools and Stuff372

take high-level Analog Hardware Description Language (AHDL) representa-
tions and automatically generate implementation-level resistor-capacitor-
inductor-transistor netlists. However, there are some niche tools available for
select, well-understood circuit types, like fi lters. These tools are usually con-
trolled by the engineer selecting items and completing fi elds on a form on
the computer screen; for example, “Select fi lter type from this list, ” “Specify
required cut-off frequency, ” and so forth. These tools are usually offered as
add-ons to analog simulators.

 RF/Microwave Design Tools
 In the case of electronic designs, it’s relatively easy to predict how they will
work when signals transition from one value to another at a reasonable speed,
and when the frequency of the system clock isn’t too high. However, as sig-
nal transitions get faster and clock frequencies increase, we move into an area
called high-speed design, where all sorts of strange effects start to make their
presence felt. For example, if a track on a circuit board is not designed cor-
rectly, a clock signal might be corrupted by sharp corners in the track and can
even refl ect (bounce) back off the end of the track and retrace its path, falsely
triggering integrated circuits on its way.

 As circuit frequencies continue to increase, we move into an area called Radio
Frequency (RF) and microwave design, where the effects become truly weird and
wonderful. For example, a simple via (copper-lined hole) linking two layers on
a circuit board can act like a radio antenna, broadcasting “noise” that impacts
the functionality of the rest of the circuit. Similar effects occur inside inte-
grated circuits, so design engineers and layout designers rely heavily on special
analysis tools when working with these designs.

 Hardware Simulation Acceleration and Emulation
 As we’ve already discussed, design engineers have access to software simula-
tors (computer programs). However, these programs can take a long time to
simulate a gate-level representation of a high-end integrated circuit contain-
ing tens of millions of logic gates. As an alternative, design engineers can use
a hardware simulator accelerator, which may be based on arrays of FPGAs
(sometimes arrays of CPUs).

 A special tool can be used to take the gate-level netlist for a design and use it to
reconfi gure the FPGAs to perform the same functions. The resulting hardware
simulator accelerator can run hundreds or thousands of times faster than its
software counterpart.

Design and Verifi cation Tools CHAPTER 23 373

 One point that can confuse the unwary is the difference between hardware sim-
ulation acceleration and emulation. This is a bit of a gray area, but a somewhat
simplistic overview is as follows.

 Hardware simulation acceleration is simply an alternative method of perform-
ing a simulation, in which the Design Under Test (DUT) runs faster than it
would if one were using a software simulator. However, the simulation is essen-
tially that of a single device in isolation, and not as part of a complete system.

 By comparison, hardware emulation involves mapping the design under test
into another piece of hardware (like an FPGA) that will run fast enough that it
can be plugged into the real target system. In this case, we are no longer simu-
lating the DUT in isolation, but are instead verifying its functionality in the
context of the system for which it is intended. (It’s important to note that this
technique also enables engineers to verify the functionality of the whole system
prior to having a physical version of the chip in question.)

 Mixed-Signal Simulation
 Based on our earlier discussions, we know that design engineers can use logic
simulators to verify digital circuits and analog simulators to verify analog cir-
cuits. In order to simulate circuits with both digital and analog portions, it is
necessary to couple the appropriate simulators together or to create a single
simulator that can work in both domains. Whichever technique is employed,
the result is referred to as mixed-signal simulation of a mixed-signal design.

 Physical Verifi cation (DRC, ERC, LVS)
 There are a number of tools that can be used to check that the design con-
forms to various rules. First there are Design Rule Checking (DRC) programs that
enforce physical rules, such as checking to see that there is suffi cient clearance
between tracks. By comparison, Electrical Rule Checking (ERC) programs inspect
the design to ensure that electrical rules have been followed; for example, to
make sure that the engineer hasn’t overloaded a logic gate by using it to drive
too many load gates. (This is similar to your plugging too many appliances
like a hair dryer, food processor, computer, and television into a single power
socket in your home.)

 Another form of verifi cation is known as Layout Versus Schematic (LVS). Once
all of the logic gates and tracks forming an integrated circuit have been placed
and routed, the end result is a format known as GDSII. This GDSII information
describes the shapes forming the masks that will be used to create the various

SECTION 3 Design Tools and Stuff374

layers used to build the integrated circuit. An LVS program starts with
the GDSII shape information and extracts a netlist, which is compared to the
original schematic.

 Signal Integrity (SI) Analysis
 Electronic signals on circuit boards and inside integrated circuits can be
affected by different segments of track and the vias linking tracks on different
levels. As we increase the speed of the signals, they can become more and more
corrupted until they no longer function as required. Thus, engineers use special
Signal Integrity (SI) programs to analyze signals and then modify track routes
and characteristics so as to ensure the integrity of these signals.

 Thermal Analysis
 Electronics engineers can run thermal analysis programs that simulate the heat
generated by each gate on an integrated circuit and each integrated circuit on
a circuit board. These programs can also be used to model the effect of attach-
ing heat sinks to the integrated circuits and passing a cooling airfl ow across the
surface of the circuit board. Based on the results of this analysis, the engineers
may decide to relocate some of the integrated circuits so as to improve the fl ow
of air and the removal of heat across the board.

 Power Analysis
 People tend not to consume much energy when they are lounging around in
armchairs. By comparison, they consume a lot more energy if they are jump-
ing up and down waving their arms around, and a room will quickly heat up
where there are a lot of people performing some physical activity in it.

 Similarly, the logic gates forming an integrated circuit consume power when
they are switching from one state to another—the faster they switch, the more
power they require. Thus, engineers use power analysis tools to calculate how
much power each area of the integrated circuit will consume. This allows them
to (a) ensure that each part of the circuit has enough power for its needs, and
(b) to make sure the chip won’t get too hot.

 Electromagnetic Interference and Compliance
(EMI and EMC)
 If you visit a hospital, you will see signs telling you not to use your cell phone.
This is because the radio waves can interfere with delicate medical equipment.
Similarly, if you have a pacemaker to help keep your heart beating steadily, you

Design and Verifi cation Tools CHAPTER 23 375

are advised to keep clear of microwave ovens, because leaking radiation can
interfere with the pacemaker’s operation.

 In fact, the tracks and vias on circuit boards and inside integrated circuits
can act like antennas broadcasting electromagnetic radiation. Called “ noise, ”
this Electromagnetic Interference (EMI) can affect the operation of other por-
tions of the circuit. In fact, EMI can extend beyond the confi nes of one sys-
tem and affect other systems nearby. Thus, various governments and standard
bodies defi ne rules for the amount of EMI permitted for each type of device.
The act of meeting these rules is referred to as Electromagnetic Compliance
(EMC). Engineers may use special tools to analyze EMI, but these tools require
huge amounts of computer power and are not as sophisticated (or accurate) as
one might wish.

 SCAN, BIST, JTAG, etc.
 A common test strategy for electronic systems is called SCAN. 4 In this case, the
board has a special “ scan-in ” signal that is connected to the “ scan-in ” pin of
the fi rst integrated circuit. A corresponding “ scan-out ” pin from the fi rst inte-
grated circuit is connected to the “ scan-in ” pin of the second integrated circuit,
and so on across the board. All of the integrated circuits are “ daisy-chained ”
together until fi nally, the “ scan-out ” pin from the last integrated circuit is con-
nected to a “ scan-out ” signal from the board. This is known as a SCAN chain.

 The idea is that the operation of the system can be paused and test signals can
be loaded into the various integrated circuits using the SCAN chain. Then the
system can be presented with a single clock cycle and the SCAN chain can be
used to read out the new contents of the integrated circuits. Using this tech-
nique, it is possible to resolve problems down to individual tracks or integrated
circuits, which can be subsequently fi xed or replaced, respectively.

 If the SCAN chain is used only to drive and monitor the inputs and outputs of
integrated circuits, then this is referred to as boundary scan (the primary bound-
ary scan specifi cation is known as JTAG). It’s also possible for the scan chain
to thread its way throughout each integrated circuit, which is referred to as
full scan. Last but not least, it’s possible to construct special structures inside
an integrated circuit that can be used to perform a Built-In Self-Test (BIST).
The scan chain can be used to initiate the BIST and monitor the results.

 4 SCAN is not an acronym and doesn’t really stand for anything, but JTAG stands for the Joint
Test Action Group within the Institute of Electrical and Electronics Engineers (IEEE). In conversation,
IEEE is pronounced “eye-triple-ee. ”

SECTION 3 Design Tools and Stuff376

 Automatic Test Pattern Generation (ATPG)
 A type of program called an Automatic Test Pattern Generator (ATPG) can be
used to automatically create tests to check individual integrated circuits or
entire circuit boards. Note that these programs are only used once a design has
been fi nalized, and that the resulting testbenches are used to check the physi-
cal devices and circuit boards. That is, you wouldn’t use one of these programs
as part of the original design and verifi cation cycle, because the ATPG program
doesn’t know if your circuit is good or bad—it will simply create a test for
whatever circuit it is presented with.

 Fault Simulation
 A fault simulator is a special form of logic simulator. The fault simulator’s
fi rst task is to look at the circuit and generate a list of all of the possible faults
that might occur; for example, a track might break, or two tracks running side-
by-side might inadvertently become connected together. The simulator then
applies each of these faults to the simulation model in the virtual world and
determines whether or not the testbench will detect each fault.

TURN THAT FROWN UPSIDE DOWN

 And so, with our lower lips quivering and little tears rolling down our cheeks,
we come to the close of this, the fi nal chapter. But turn that frown upside down
into a smile, because there are still oodles of yummy appendices containing
enough mouth-watering information to form a book in their own right.

 As that great British Prime Minister Winston Spencer Churchill (1874–1965)
would have said: “ Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning. ” 5

 5 Speech at the Lord Mayor’s Day Luncheon, London, England (November 10, 1942).

377

 BEWARE—HERE BE DRAGONS!
 In ancient times, the phrase “ Beware, here be dragons! ” was penned on maps
to indicate unknown territory. Today, the same words of caution should be
applied to the terms active-high and active-low, which are subject to confusion.
Some academics (and even textbooks) defi ne an active-low signal as one whose
asserted (active) state is at a lower (more negative) voltage level than its unas-
serted (inactive) state. On this basis, an active-high signal would be one whose
asserted state is at a higher (more positive) voltage level than its unasserted state.
Although these defi nitions may work most of the time, they cause confusion
when combined with negative logic implementations . 1

 Engineers in the trenches generally take the position that an active-high signal
is one whose active/asserted state is considered to be TRUE or logic 1, while
an active-low signal is one whose active state is considered to be FALSE or
logic 0. These defi nitions allow all forms of logic—including the assertion-level
logic introduced in this Appendix—to be represented without any confu-
sion, regardless of whether positive or negative logic implementations are
employed. These manly-man defi nitions are the ones used throughout this
book. However, when using the terms active-high and active-low in discussions
with other folks, you are strongly advised to make sure that you all understand
them to mean the same thing before you fi nd yourself up to your ears in alliga-
tors fi ghting fi res. 2

 APPENDIX A APPENDIX A

 Assertion-Level Logic

 1 Negative logic implementations aren’t as common as they once were, but you never know
when one will sneak up on you when you aren’t looking (see Appendix B: Positive Versus
Negative Logic for more details).
 2 I never metaphor I didn’t like (grin).

APPENDIX A378

 STANDARD VERSUS ASSERTION-LEVEL LOGIC
 The purpose of a circuit diagram is to convey the maximum amount of infor-
mation in the most effi cient fashion. One aspect of this is assigning meaningful
names to wires; for example, naming a wire system_reset conveys substantially
more information than calling it big_boy . 3

 Another consideration is that the signals carried by wires may be active-high
or active-low (see also the previous topic). Consider a portion of a circuit
containing a tri-state buffer with an active-low control input, as illustrated in
 Figure A.1 .

&

NAND

TRI-BUF

~enable
enable_A

enable_B

FIGURE A.1
 Naming active-low signals.

 3 I could tell you some stories! I remember looking at the schematics for some computer
and inquiring why a certain element was called “The Banana Register. ” I was informed that
this was because nothing happened for a long time, and then all of the information “came
in bunches. ” (I’m not joking.)

 In order to convey as much information as possible, it is preferable to indicate
the nature of an active-low signal in its name. One method of achieving this
is to prefi x the name with a tilde character “� ” ; hence, the use of ~enable in
Figure A.1 . When both the enable_A and enable_B signals feeding the NAND
gate are placed in their active-high states, the ~enable signal is driven to its
active-low state and the tri-state buffer is enabled.

 It is important to note that the active-low nature of the ~enable signal is not
determined by the NAND. The only thing that determines whether a signal is
active-high or active-low is the way in which it is used by any target gates, such
as the tri-state buffer in this example. Thus, active-low signals can be generated
by ANDs and ORs as easily as NANDs and NORs.

 APPENDIX A 379

 The problem with the standard symbols for BUF, NOT, AND, NAND, OR, and
NOR is that they are tailored to refl ect operations based on active-high signals
being presented to their inputs. To address this problem, special assertion-level
logic symbols can be used to more precisely indicate the function of gates with
active-low inputs. For example, consider how we might represent a NOT gate
used to invert an active-low ~enable signal into its active-high enable counter-
part (Figure A.2).

~enable enable

NOT

Standard symbol

~enable enable

NOT

Assertion-level symbol

FIGURE A.2
Standard versus assertion-level NOT symbols.

NOTBUF

Standard view

BUFNOT

Assertion-level view

NOT

NOT

FIGURE A.3
 One way to visualize
things.

 Both of these symbols indicate an inversion, but the
assertion-level symbol is more intuitive because it
refl ects the fact that an active-low input is being trans-
formed into an active-high output. In both cases, the
bobbles on the symbols indicate the act of inversion.
One way to visualize this is that the symbol for a NOT
has been pushed into a symbol for a BUF until only its
bobble remains visible (Figure A.3).

 In the real world, both standard and assertion-level
symbols are implemented using identical logic gates.
Assertion-level logic does not affect the fi nal implemen-
tation, but simply offers an alternative way of viewing
things. Visualizing bobbles as representing inverters is
a useful technique for handling more complex func-
tions. Consider a variation on our original circuit as
illustrated in Figure A.4 : in this case, the ~enable_A and
~enable_B signals are active-low and the tri-state buffer
has an active-high enable input.

 Now, whenever we see an AND or NAND symbol, our
knee-jerk reaction is to assume that the case of particu-
lar interest is when all of its inputs are set to logic 1.
The purpose of this circuit, however, is to set the enable
signal to its active-high state if either of the ~enable_A or ~enable_B signals
are in their active-low states. Of course, both of the circuit representations

APPENDIX A380

in Figure A.4 are functionally identical (you can easily prove this by drawing
out their truth tables). Once again, however, the assertion-level representation
is the more intuitive, especially for someone who is unfamiliar with the func-
tion of the circuit. This is because the assertion-level symbol unambiguously
indicates that the enable signal will be set to logic 1 if either of the ~enable_A
or ~enable_B signals are presented with logic 0 s.

 Any standard primitive gate symbol can be transformed into its assertion-
level equivalent by inverting all of its inputs and outputs, and then exchang-
ing any & (AND) operators for | (OR) operators (and vice versa). In fact, a
quick review of Chapter 9: Boolean Algebra reveals that these steps are identical
to those used in a DeMorgan Transformation. Thus, assertion-level symbols may
also be referred to as DeMorgan equivalent symbols. The most commonly used
assertion-level symbols are those for BUF, NOT, AND, NAND, OR, and NOR
(Figure A.5).

 Note that the assertion-level symbols for XOR and XNOR are identical to
their standard counterparts. The reason for this is that if you take an XOR and
invert its inputs and outputs, you end up with an XOR again; similarly for an
XNOR. A little experimentation with their truth tables will quickly reveal the
reason why.

 DID SOMEONE JUST SHRIEK?
 In the discussions above, we used tilde “� ” characters to indicate active-low
signal names; for example, ~enable. As an alternative, some designers prefer to
use an exclamation mark “!” (nicknamed a “shriek”), as in, !enable .

 Similarly, both tilde and shriek characters may also be used to indicate complemen-
tary outputs; for example, the q and ~q (or !q) outputs from a latch or a fl ip-fl op.

&

NAND

enable
~enable_A

~enable_B

Standard symbol

TRI-BUF

OR

TRI-BUF

enable
~enable_A

~enable_B

Assertion-level equivalent

I

FIGURE A.4
Standard NAND versus
assertion-level OR
symbols.

 APPENDIX A 381

 Either of these is great … you just have to be careful when communicating with
other people, because different folks may understand these symbols to mean
different things.

 For example, consider an equation like y � a & !b. Throughout the course
of this book, we’ve used the & symbol to represent an AND function, but
what about the ! symbol? Some folks might consider this to represent a
NOT gate (think in terms of y � a AND NOT b), while others may con-
sider it to be part of an active-low signal name (think in terms of y � a
AND !b).

 Actually, this is also true of the tilde character. Furthermore, in addition to
communicating with other people, we might also be entering these equations
as text fi les that are to be processed by computer-aided tools. In this case, these
tools may consider the “ � ” and “ ! ” characters to represent logical functions.

 Yet another technique is to draw a horizontal line, or bar, over the name, but
this is not recommended for a number of reasons. In addition to the fact that
horizontal lines are diffi cult to replicate in textual form on a computer, such
bars are often used to indicate negations when we’re writing Boolean equations

y � a

y � a

y � a | b

y � a | b

y � a & b

y � a & b

y � a ^ b

y � a ^ b

a y

a y

a
b

y
I

a
b

y
I

a
b

y
I

&
a
b

y

&
a
b

y

a
b

y
I

Assertion-level equivalent

y � a

y � a

y � a & b

y � a & b

y � a | b

y � a | b

y � a ^ b

y � a ^ b

BUF

NOT

AND

NAND

OR

NOR

XOR

XNOR

&
a
b

a y

y

a y

&
a
b

y

a
b

y

a
b

y

a
b

y

I

I

I

a
b

y
I

Standard equation and symbolName

FIGURE A.5
Commonly used assertion-level symbols.

APPENDIX A382

(see the equations we used in Figure 9.11 for the DeMorgan Transformation of
an AND function, for example).

 One way to avoid confusion is to avoid using special characters like “� ” and
 “ ! ” and instead prefi x or postfi x active-low signal names with a special letter;
for example, Nenable or enableN. Ultimately, you have to either (a) decide what
works for you or (b) use whatever techniques are promoted by the company or
organization for which you work .

383

 ARE YOU POSITIVE ABOUT THAT?
 The terms positive logic and negative logic refer to two conventions that dictate
the relationship between logical values and the physical voltages used to rep-
resent them. Unfortunately, although the core concepts are relatively simple,
fully comprehending all of the implications associated with these conventions
requires an exercise in lateral thinking suffi cient to make even a strong man
break down and weep!

 Before plunging into the fray, it is important to understand that logic 0 and
logic 1 are always equivalent to FALSE and TRUE, respectively. 1 The reason
these terms are used interchangeably is that digital functions can be considered
to represent either logical or arithmetic operations (Figure B.1).

APPENDIX BAPPENDIX B

 Positive Versus
Negative Logic

1Unless you’re really taking a walk on the wild side, in which case all bets are off.

Logical operation

XOR

a

b
y

F

F

T

T

a

F

T

F

T

F

T

T

F

b y

Arithmetic operation
(modulo-2 adder)

XOR

a

b
y

0

0

1

1

a

0

1

0

1

0

1

1

0

b y
I I

FIGURE B.1
 Logical versus arithmetic views of a digital function.

 Having said this, it is generally preferable to employ a single consistent format
to cover both cases, and it’s easier to view logical operations in terms of 0 s and
1 s than it is to view arithmetic operations in terms of Fs and Ts. The key point
to remember as we go forward is that, by defi nition, logic 0 and logic 1 are
logical concepts that have no direct relationship to any physical values.

APPENDIX B384

 PHYSICAL TO LOGICAL MAPPING (NMOS LOGIC)
 Let’s gird up our loins and meander our way through the morass one step at
a time … The process of relating logical values to physical voltages begins by
defi ning the frames of reference to be used. One absolute frame of reference
is provided by truth tables, which are always associated with specifi c functions
(Figure B.2).

F

F

T

T

a

F

T

F

T

F

F

F

T

b y

F

F

T

T

a

F

T

F

T

T

T

T

F

b y

F

F

T

T

a

F

T

F

T

T

F

F

F

b y

NAND

a

b
y

NOR

I

a

b
y

F

F

T

T

a

F

T

F

T

F

T

T

T

b y

a

b
y

OR

I&

AND

a

b
y

&

FIGURE B.2
Absolute relationships between logical functions and their truth tables.

2Hence, positive logic is also known as positive-true.

 Another absolute frame of reference is found in the physical world, where
specifi c voltage levels applied to the inputs of a digital function cause corre-
sponding voltage responses on the outputs. These relationships can also be
represented in truth table form. Consider a logic gate constructed using only
NMOS transistors (Figure B.3).

 With NMOS transistors connected as shown in Figure B.3 , an input connected
to the more negative VSS , turns that transistor OFF, and an input connected to
the more positive VDD turns that transistor ON. The fi nal step is to defi ne the
mapping between the physical and logical worlds; either 0 V is mapped to
FALSE and � ve (the more positive supply rail) is mapped to TRUE, or vice
versa (Figure B.4).

 Using the positive logic convention, the more positive potential is considered to
represent TRUE 2 and the more negative potential is considered to represent
FALSE. By comparison, using the negative logic convention, the more negative

APPENDIX B 385

3Hence, negative logic is also known as negative-true.

a

b

Physical mapping

VDD(�ve)

VSS(0v)

y 0v

0v

�ve

�ve

a

0v

�ve

0v

�ve

�ve

�ve

�ve

0v

b y

FIGURE B.3
The physical mapping of an NMOS logic gate.

Re-order
0

0

1

1

a

0

1

0

1

1

0

0

0

b y

0

0

1

1

a

0

1

0

1

1

1

1

0

b y

F

F

T

T

a

F

T

F

T

T

F

F

F

b y

 0v � TRUE
�ve � FALSE
(negative logic)

 0v � FALSE
�ve � TRUE
(positive logic)

T

T

F

F

a

T

F

T

F

F

F

F

T

b y

F

F

T

T

a

F

T

F

T

T

T

T

F

b y

Physical
mapping

0v

0v

�ve

�ve

a

0v

�ve

0v

�ve

�ve

�ve

�ve

0v

b y
a

b
y

NOR

I

NAND

a

b
y

&

FIGURE B.4
 The physical-to-logical mapping of our NMOS logic gate.

potential is considered to represent TRUE 3 and the more positive potential
is considered to represent FALSE . Thus, this circuit may be considered to be
performing either a NAND function in positive logic or a NOR function in neg-
ative logic. (Are we having fun yet?)

APPENDIX B386

 PHYSICAL TO LOGICAL MAPPING (PMOS LOGIC)
 From the previous example it would appear that positive logic is the more
intuitive, as it is easy to relate logic 0 to 0 V (no volts) and logic 1 to �ve
(presence of volts). On this basis, one may wonder why negative logic ever
reared its ugly head. The answer to this, as are so many things, is rooted in
history. When the MOSFET technology was originally developed, PMOS tran-
sistors were easier to manufacture and were more reliable than their NMOS
counterparts (in the very early days, PMOS transistors were the only ones that
worked at all; due to a variety of problems, the fi rst NMOS transistors were per-
manently ON, which wasn’t much use to anyone). Thus, the majority of early
MOSFET-based logic gates were constructed from combinations of PMOS tran-
sistors and resistors. Consider a logic gate constructed using only PMOS tran-
sistors (Figure B.5).

0v

0v

�ve

�ve

a

0v

�ve

0v

�ve

�ve

�ve

�ve

0v

b y

a

b

Physical mapping

�ve

0v

y

FIGURE B.5
 The physical mapping of a PMOS gate.

 Circuits constructed using the original PMOS transistors typically used a nega-
tive power supply; that is, a power supply with a 0 V rail and a negative (�ve)
rail. With PMOS transistors connected as shown in Figure B.5 , an input con-
nected to the more positive 0 V rail turns that transistor OFF , while an input
connected to the more negative �ve rail turns that transistor ON. Once again,
the fi nal step is to defi ne the mapping between the physical and logical worlds;
either 0 V is mapped to FALSE and �ve is mapped to TRUE, or vice versa
(Figure B.6).

APPENDIX B 387

 Thus, this circuit may be considered to be performing either a NOR function in
positive logic or a NAND function in negative logic. In this case, negative logic
is the more intuitive, as it is easy to relate logic 0 to 0 V (no volts) and logic
1 to �ve (presence of volts). Additionally, the physical structure of the PMOS
gate is identical to that of the NMOS gate; if the NMOS gate is represented
in positive logic and the PMOS gate is represented in negative logic, then
both representations equate to NAND functions, which, if nothing else, is
aesthetically pleasing.

Re-order 0

0

1

1

a

0

1

0

1

1

1

1

0

b y

0

0

1

1

a

0

1

0

1

1

0

0

0

b y

F

F

T

T

a

F

T

F

T

T

F

F

F

b y

a

b
y

NOR

I

NAND

a

b
y

&

 0v � FALSE
�ve � TRUE

(negative logic)

 0v � TRUE
�ve � FALSE
(positive logic)

F

F

T

T

a

F

T

F

T

T

T

T

F

b y

T

T

F

F

a

T

F

T

F

F

F

F

T

b y

Physical mapping

0v

0v

�ve

�ve

a

0v

�ve

0v

�ve

�ve

�ve

�ve

0v

b y

FIGURE B.6
The physical-to-logical mapping of our PMOS logic gate.

This page intentionally left blank

389

 “ BUT THAT’S NOT LOGICAL, CAPTAIN! ”
 Some digital functions can be diffi cult to optimize if they are represented in the
conventional sum-of-products or product-of-sums forms, 1 which are based on ANDs,
ORs, NANDs, NORs, and NOTs. In certain cases it may be more appropriate to
implement a function in a form known as Reed-Müller logic, which is based on
XORs and XNORs. One indication as to whether a function is suitable for the Reed-
Müller form of implementation is if that function’s Karnaugh Map displays a check-
erboard pattern of 0s and 1s. Consider a familiar two-input function (Figure C.1).

 APPENDIX C APPENDIX C

 Reed-Müller Logic

 1 The concepts of sum-of-products and product-of-sums were introduced in Chapter 9:
Boolean Algebra .

a

b
y

XOR

OR
y

AND

AND
a

b

a
b

Conventional logic
y � (a & b) | (a & b)

Reed-Müller logic
y � (a ^ b)

&

&

|

00
ab

01 11

1 1

10

|0

0

1

1

a

0

1

0

1

0

1

1

0

b y

FIGURE C.1
2-input function suitable for Reed-Müller implementation.

APPENDIX C390

 Since the above truth table is easily recognizable as being that for an XOR func-
tion, it comes as no great surprise to fi nd that implementing it as a single XOR gate
is preferable to an implementation based on multiple AND, OR and NOT gates. 2
A similar checkerboard pattern may apply to a three-input function (Figure C.2).

 As XORs are both commutative 3 and associative, 4 it doesn’t matter which com-
binations of inputs are applied to the individual gates. The checkerboard pat-
tern for a four-input function continues the theme (Figure C.3).

a

b

XOR

y

XOR

c

Conventional logic
y � (a & b & c) | (a & b & c) | (a & b & c) | (a & b & c)

00
ab

cd 01 11

1 1

1 1

10

00

01

|

|

Reed-Müller logic
y � a ^ b ^ c

FIGURE C.2
3-input function suitable for Reed-Müller implementation.

Conventional logic
y � (a & b & c & d) | (a & b & c & d) |

(a & b & c & d) | (a & b & c & d) |
(a & b & c & d) | (a & b & c & d) |
(a & b & c & d) | (a & b & c & d)

Reed-Müller logic
y � (a ^ b ^ c ^ d)

00
ab

cd 01 11

1 1

11

1

1 1

1

10

00

01

11

10

FIGURE C.3
4-input function suitable for Reed-Müller implementation.

 2 It’s common to use “^” characters in Boolean equations to indicate XOR functions.
 3 For example, (a ̂ b) � (b ^ a). (Remember that the “� ” symbol means “… is equivalent to …”)

 4 For example, (a ^ b) ^ c � a ^ (b ^ c).

 APPENDIX C 391

 Larger checkerboard patterns involving groups of 0s and 1s also indicate func-
tions suitable for a Reed-Müller implementation (Figure C.4).

00
ab

cd 01

1

1

1

1

1

1

1

1

1

1

11

11 1

1

11

1

11

1

11

1

1

1

1

1

1

1

1

11 10

00

01

11

10

00

1 1

11

11

1 1

ab
cd 01 11 10

00

01

11

10

00
ab

cd 01 11

1 1

1

1

1

1

1 1

10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

y � a ^ b y � a ^ c y � b ^ c

 y � b ^ d y � a ^ b ^ d y � a ^ b ^ c

FIGURE C.4
Example functions suitable for Reed-Müller implementations.

 6 Corresponding to all of the inputs being logic 0.

 Once you have recognized a checkerboard pattern, there is a quick “rule of
thumb ” for determining the variables to be used in the Reed-Müller implemen-
tation. Select any group of 0s or 1s and identify the signifi cant and redundant
variables, 5 and then simply XOR the signifi cant variables together.

 Although we don’t bother entering logic 0 values into our Karnaugh maps, we
know that any empty squares really contain 0s. As all of the checkerboard pat-
terns we’ve considered this far include a logic 0 in the box in the upper left
corner, 6 the resulting Reed-Müller implementations can be realized using only
XORs. Having said this, any pair of XORs may be replaced with XNORs, the
only requirement being that there is an even number of XNORs.

 5 The signifi cant variables are those whose values are the same for all of the boxes forming
the group, while the redundant variables are those whose values vary between boxes.

APPENDIX C392

 Alternatively, if the checkerboard pattern includes a logic 1 in the box in the
upper left corner, the Reed-Müller implementation must contain an odd number
of XNORs. Once again, it does not matter which combinations of inputs are
applied to the individual XORs and XNORs (Figure C.5).

00
ab

cd 01

1

1

1

1

11

1

1

1

1

1 1

1 1

1 1

1

1

11

1

11

1 1

1 1

1 1

1

1

11 10

00

01

11

10

00

1 1 1 1

1 1

ab
cd 01 11 10

00

01

11

10

00
ab

cd 01 11

11

1

1

1

1

11

10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

00
ab

cd 01 11 10

00

01

11

10

y � (a ^ b) ^ c ^ d y � (c ^ d) y � (a ^ c)

 y � (a ^ d) y � (b ^ d) y � (a ^ c) ^ d

11

1

FIGURE C.5
Example Reed-Müller implementations requiring XNOR gates.

 7 Example encoding and decoding functions suitable for Reed-Müller implementation are
presented in Appendix D: Gray Codes .

 Although these examples provide a very limited introduction to the concept of
Reed-Müller logic, checkerboard Karnaugh Map patterns are easy to recognize
and appear surprisingly often. Reed-Müller implementations are often appro-
priate for circuits performing arithmetic or encoding functions. 7

393

 GRAY, BUT NOT GLOOMY
 When moving between states in a standard binary sequence, multiple bits may
change from 0 to 1 or vice versa; for example, two bits change value when moving
from 0010 2 to 0100 2. In the physical world there is no way to ensure that both bits
will transition at exactly the same time, so this system may actually pass through an
intermediate state. That is, our intended state change of 0010 2 to 0100 2 might result
in the sequence 0010 2 to 0110 2 to 0100 2, or possibly 0010 2 to 0000 2 to 0100 2. And
if more bits are changing, we might bounce
though a series of intermediate values.

 One way to avoid this problem is to use a
Gray code , 1 in which only a single bit changes
when moving between states (Figure D.1).

 Gray codes are of use for a variety of appli-
cations, such as facilitating error correction
in digital communications and the ordering
of the input variables on Karnaugh Maps. 2
Another application (the task for which Gray
codes were originally designed) is encoding
the angle of a mechanical shaft, where a disc
attached to the shaft is patterned with areas
of conducting material (Figure D.2).

 APPENDIX D APPENDIX D

 Gray Codes

 1 Note that the correct grammar and spelling for Gray codes is “ Gray ” (not “ gray, ” “ grey, ”
or “ Grey ”). This is because Gray codes are named after American physicist and researcher
Frank Gray, who patented their use for shaft encoders in 1953.
 2 Karnaugh maps were introduced in Chapter 10: Karnaugh Maps. Also, you can see examples
of this ordering in Figure D.4 and Figure D.5 .

Binary Gray code

0

0

0

0

b[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

11 1 0

11 1 1

01 0 1

01 0 0

g[3:0]

FIGURE D.1
Binary versus Gray
codes.

APPENDIX D394

 The conducting areas are arranged in concentric circles, where each circle rep-
resents a binary digit. A set of electrical contacts, one for each of the circles, is
used to detect the logic values represented by the presence or absence of the
conducting areas. A digital controller can use this information to determine the
angle of the shaft. The precision of the measurement depends on the number
of bits (circles). A 4-bit value representing 16 unique states allows the shaft’s
angle to be resolved to 22.5 degrees, while a 10-bit value representing 1024
unique states allows the shaft’s angle to be resolved to 0.35 degrees. Using a
Gray code sequence to defi ne the conducting and nonconducting areas ensures
that no intermediate values are generated as the shaft rotates.

 GENERATING A GRAY CODE
 Commencing with a state of all zeros, a Gray code can be generated by always
changing the least signifi cant bit that results in a new state. An alternative
method which may be easier to remember and use is as follows:

■ Commence with the simplest Gray code possible; that is, for a single bit.
■ Create a mirror image of the existing Gray code below the original

values.

1000 0000

1001 0001

1011 0011

1010 0010

1110 0110

1111 0111

1101 0101

1100 0100

FIGURE D.2
Gray code used for shaft-angle encoding.

 APPENDIX D 395

■ Prefi x the original values with 0s and the mirrored values with 1s.
■ Repeat the last two steps until the desired width is achieved.

 An example of this mirroring process 3 used to generate a 4-bit Gray code is
shown in Figure D.3 .

 BINARY-TO-GRAY AND GRAY-TO-BINARY
 It is often required to convert a binary sequence into a Gray code or vice versa.
Such converters are easy to create and are of especial interest here due to their
affi nity to the Reed-Müller implementations that were introduced in Appendix C:
Reed-Müller Logic . Consider a Binary-to-Gray converter (Figure D.4).

 The checkerboard patterns of 0s and 1s in the Karnaugh Maps immediately
indicate the potential for Reed-Müller implementations. Similar checkerboard
patterns are also seen in the case of a Gray-to-Binary converter (Figure D.5).

0

0

0

0

Prefix

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

01 0 1

0

0

0

0

Mirror

0 0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

1

1

0

0

1

1

1

1

0

1

1

0

0

1

0 0 1

0

0

0

0

Prefix

0 0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

Mirror

0 0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

Prefix

0 0

0

1

1

1

1

0

Mirror

0

1

1

0

Start

0

1

1-bit 2-bit 3-bit

01 0 00 0 0

4-bit

FIGURE D.3
Using a mirroring process to generate a 4-bit Gray code.

 3 It might be more correct to call this a “ recursive reverse-and-prefi x ” technique.

APPENDIX D396

0

0

0

0

b[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

11 1 0

11 1 1

01 0 1

01 0 0

g[3:0]

00
b[3:2]

b[1:0] 01

1

1

1

1

1

1

1

1

11 10

00

g[2] � b[3] ^ b[2]
01

11

10

00
b[3:2]

b[1:0] 01

1

1

1

1

1

1

1

1

11 10

00

g[1] � b[2] ^ b[1]
01

11

10

00
b[3:2]

b[1:0] 01

1111

1111

11 10

00

g[0] � b[1] ^ b[0]
01

11

10

g[2]

g[3]

XOR

b[0]

b[1]

b[2]

b[3]

g[0]
I

XOR

g[1]
I

XOR

I

FIGURE D.4
Binary-to-Gray converter.

g[3:0] b[3:0]

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

11 1 0

11 1 1

01 0 1

01 0 0

00
g[3:2]

g[1:0] 01

1

1

1

1

1

1

1

1

11 10

00

b[2] � g[3] ^ g[2]
01

11

10

00
g[3:2]

g[1:0] 01

1

1

1

1

1

1

1

1

11 10

00

b[1] � g[3] ^ g[2] ^
 g[1]

01

11

10

00
g[3:2]

g[1:0] 01

1

1

1

1

1

1

1

1

11 10

00

b[0] � g[3] ^ g[2] ^
 g[1] ^ g[0]

01

11

10

b[2]

b[3]

I

XOR

g[0]

g[1]

g[2]

g[3]

b[0]
I

XOR

b[1]
I

XOR

FIGURE D.5
Gray-to-Binary converter.

 APPENDIX D 397

 IT’S TOO NOISY IN HERE!
 Gray code counters are of interest for a variety of applications, such as repre-
senting the state variables in state machines 4 or acting as pointers in First-In
First-Out (FIFO) 5 memories. This is because only one output bit is ever toggling
at a time in a Gray code “counter, ” as opposed to possibly multiple bits in a
binary counter.

 In addition to preventing intermediate states, Gray code counters consume
only half the power of an equivalent binary counter, and they generate cor-
respondingly less noise. Actually, while the power and average noise difference
between a Gray and a binary counter asymptotically approaches two, the peak
noise difference is equal to the number of bits, since a Gray counter toggles only
one bit at a time while a binary counter toggles all of its bits simultaneously
two times over the course of a full-count cycle, with fewer bits toggling propor-
tionally more times.

 ACTUALLY GENERATING A GRAY CODE
 Before we proceed, let’s briefl y ponder the process of actually generating a Gray
code. Just to give us something to play with, let’s suppose we wish to generate a
Gray code that can be used to index into a memory array. For example, suppose
we’re implementing something sort-of like a FIFO, and that (for the purposes
of this example), we simply wish to keep on cycling through all of the memory
locations. The point is that we aren’t particularly concerned as to the order in
which we address the locations, just that we sequence our way through them
visiting each one a single time before returning to the fi rst location to do it all
over again.

 Assuming that we’re dealing with a 16-word memory array, one scenario [as
illustrated in Figure D.6(a)] starts with a standard 4-bit binary counter, in
which the current count value is passed through a chunk of feedback logic to
generate the next count value. Also, the current count value is passed through
a Binary-to-Gray converter (as introduced in Figure D.4) to generate a corre-
sponding Gray code.

 The alternative technique [as illustrated in Figure D.6(b)] is to simply create a
Gray code counter from the ground up. Now, if we were to compare the binary

 5 FIFO memories are presented in more detail in Appendix E: Linear Feedback Shift Registers
(LFSRs).

 4 State machines were introduced in Chapter 12: State Machines.

APPENDIX D398

counter (including binary-to-Gray converter) with the Gray code counter, there
are several things I don’t know off the top of my head:

■ How many logic gates are required for each implementation?
■ How many levels of logic gates are there in the two feedback paths?
■ What’s the (relative) maximum frequency of each type of counter?
■ What’s the (relative) switching activity, noise, and power consumption of

each type of counter?

 I tell you, I’m constantly amazed by the number of things I don’t know. Now,
we could work this out, but I’m a tad busy at the moment, so we’ll leave the
pondering of these posers as an exercise for the reader (grin).

 GENERATING SUB-2 n SEQUENCES
 Just to make sure we’re all tap-dancing to the same drumbeat, let’s briefl y set
the scene. Consider a 4-bit binary counter. As we’ve already discussed, multiple

Current
Count

Next
Count

a) Using a binary counter
with a B-to-G converter

b) Using a Gray code
counter directly

FB*
Gray code

counter

Address
decoder

Memory
array

Binary
counter

FB*

Binary-to-Gray
converter

Address
decoder

Memory
array

*FB � Feedback logic used to generate the next count value

FIGURE D.6
Two techniques for generating a Gray code sequence.

 APPENDIX D 399

bits may change when transitioning from one value
to another. For example, four bits change when one
of the pointers transitions from 0111 2 to 1000 2. If
multiple bits transitioning will cause us problems,
we may decide to use a Gray code counter, in which
only one bit changes as we transition from one
value to another (Figure D.7).

 Observe that when we reach the fi nal (maximum)
Gray code value of 1000 2, the next count will return
us to our initial value of 0000 2, which means that—
as we expect—only a single bit changes for this
transition also. Also observe that we’ve shown the
hexadecimal values associated with each binary pat-
tern in bold (we’ll return to consider in these values
in the next topic).

 Now, suppose—instead of sequencing through all
16 values—that for some reason we actually wish to
cycle through only 10 words. If we use our original
Gray code as shown in Figure D.6 , the sequence will
now be as follows: 0000 2, 0001 2, 0011 2, 0010 2, 0110 2 ,
0111 2, 0101 2, 0100 2, 1100 2, 1101 2. The problem is that three bits will change value
on the next transition, which will return us to our starting value of 0000 2 from our
current value of 1101 2, which means that this last transition is not a Gray code.

 So, is it possible to create a Gray code sequence for any nonpower-of-2 number
(so long as it is an even number)? Let us see …

 Throwing Away Adjacent Pairs
 Using our original Gray code as the base code, wherever you have a pair of
adjacent states where the least-signifi cant bit does not change, then the states
before and after such a pair always differ by exactly one bit, as illustrated in
 Figure D.8 .

 For example, consider the fi rst four codes in the left-hand table: 0000 2, 0001 2 ,
0011 2, and 0010 2. If we remove the two shaded codes (0001 2 and 0011 2), we are
left with 0000 2 and 0010 2, which differ by only one bit. So by removing any
such pair from the left-hand table we have a 14-count sequence; removing any

0

0

0

0

b16[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

11 1 1

11 1 0

0

1

2

3

4

5

6

7

8

9

A

B

C

D

F

E

0

0

0

0

g16[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

01 0 0

01 0 1

0

1

3

2

6

7

5

4

C

D

F

E

A

B

8

9

(a) Binary
sequence

(b) Gray code
sequence

FIGURE D.7
Binary versus Gray
codes.

APPENDIX D400

two pairs gives us a 12-count sequence; and removing any three pairs gives us
a 10-count sequence. (It would be pointless to remove four pairs to give us an
8-count sequence, because we could achieve the same effect by dropping down
to a 3-bit Gray code.)

 In fact, we can mix-and-match to some extent, because we could remove one
pair of codes whose least-signifi cant bit was 1 and another pair whose least-
signifi cant bit was 0, so long as these pairs are not themselves adjacent to each
other.

 Pruning the Middle
 Our previous solution is easy to use by hand, but it’s not great as the basis for
an algorithmic approach, because it would require us to keep track of which
pairs of codes we’ve removed.

 In fact, the solution is rather simple. Remember that we generated our original
4-bit Gray code using what I call the “mirroring method ”? Well, it’s possible to

0

0

0

0

Pairs where
LSB is 1

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

Pairs where
LSB is 0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

Remove one
or more of the
shaded pairs

FIGURE D.8
Throwing away adjacent pairs.

 APPENDIX D 401

simply remove pairs of entries from the center of the table around the “ mirror
line ” (Figure D.9).

 If we desire a 14-count sequence, for example, we simply remove two entries
from the middle—the one immediately above the “ mirror ” line and one imme-
diately below. Similarly, if we are looking for a 12-count sequence, we remove
two entries above the “ mirror ” line and two below, and so forth.

 Pruning the Ends
 The funny thing about digital logic is that there’s almost always multiple ways
of doing anything. For example, the logical counterpart to the previous solu-
tion is to remove the same numbers of entries from the top and from the bot-
tom of a Gray code sequence (Figure D.10).

 In this case, if we desire a 14-count sequence, we simply remove one entry from
the top of the table and one from the bottom; if we are looking for a 12-count
sequence, we remove two entries from the top and two from the bottom, and
so forth.

0

0

0

0

16-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

14-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

0

0

0

0

12-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

10-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

“Mirror” line

FIGURE D.9
Pruning the middle of the sequence.

APPENDIX D402

 GENERATING SUB-2 n SEQUENCES WITH
CONSECUTIVE VALUES
 With regard to the previous topic in which we generated nonpower-of-2
sequences; the solutions we came up with will be perfectly OK for some appli-
cations, but there may be problems if we want to use them for certain tasks,
such as pointers into memory arrays.

 Let’s suppose that—as opposed to a full 2 n count (16 values in the case of the
4-bit examples we’ve been playing with)—we wish to use a reduced count
sequence, such as 14, 12, or 10. Obviously this is easy-peasy when using pure
binary addressing schemes, as illustrated in Figure D.11 .

 As we see, all we have to do is to remove states from the end of the count
sequence and to implement corresponding smaller arrays of memory locations.

 But let’s now consider the case of the various Gray code implementations. As we
discussed in the previous topic, there are several approaches we can use in order
to generate a reduced-count Gray code sequence. One of these is to simply remove
pairs of values from either side of the “mirror line ” as illustrated in Figure D.12 .

0

0

0

0

16-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

14-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

0

0

0

0

12-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

10-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

“Mirror” line

FIGURE D.10
Pruning the ends of the sequence.

 APPENDIX D 403

0

0

0

0

b16[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

0

1

0

0

1

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

11 1 1

11

1

2

3

0

4

5

6

7

8

9

A

B

C

D

F

E 1

1

0

0

0

0

0

b14[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

0

1

0

1

0

1

11 1 1

11 1 0

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

0

1

0

1

0

1

11 1 1

11 1 0

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

0

1

0

1

0

1

11 1 1

11 1 0

b12[3:0] b10[3:0]

(a) 16-count (b) 14-count (c) 12-count (d) 10-count

FIGURE D.11
Implementing reduced binary sequences.

0

0

0

0

16-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

14-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

0

0

0

0

12-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

0

1

1

0

0

1

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

01 0 0

01 0

1

1

0

0

0

0

10-count

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

01 0 0

01 0 1

“Mirror” line

FIGURE D.12
One way to implement reduced Gray code sequences.

APPENDIX D404

 OK so far, but now let’s consider what happens when we apply one of these
reduced sequences to our memory addressing logic; for example, let’s take our
10-count example. Basically we are going to end up with “holes” in our mem-
ory array, as illustrated in Figure D.13 .

0

0

0

0

g10[3:0]

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

0

1

1

0

0

1

01 0 0

01 0 1

0

1

2

3

4

5

6

7

8

9

A

B

C

D

F

E

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

1

11 1 1

11 1 0

0

1

3

2

6

7

5

4

C

D

F

E

A

B

8

9

Gray code counter Memory array

Address
decoder

FIGURE D.13
This approach leaves “ holes ” in our memory array.

 6 The full quote by American composer, guitarist, singer, fi lm director, and satirist Frank
Vincent Zappa is: “ The crux of the biscuit is the apostrophe. ” (I actually know what he meant
by this, but that’s a story for another day.)

 As we see, the sequence followed by this Gray code counter is: 0, 1, 3, 2, 6, E,
A, B, 9, 8, and it then cycles back to 0 again. Each step is a Gray code (single-
bit) transition, including the wrap-around from 8 to 0. (The right-hand side of
Figure D.13 simply refl ects which locations are hit in the memory array—not
the order in which they are hit.)

 The end result is that it is no longer a trivial task to create a cut-down memory
array, because these “holes” are going to mess everything up. So, the real ques-
tion (the “Crux of the Biscuit ” as it were), 6 is: “ Is it possible to create a Gray code
sequence to address a 10-word FIFO using sequential addresses of 0-to-9? ”

 Well, here’s a technique that Mike Jarvis, a Design Engineer at Cray, taught me.
First of all we create an empty table with the number of entries we desire: ten

 APPENDIX D 405

in the case of this particular example. We set the least-signifi cant bit to 0 for all
of the entries in the upper half of the table, and to 1 for all of the entries in the
lower half of the table [Figure D.14(a)].

–

–

–

g10[3:0]

–

–

–

–– 0

–

–

–

–

–

–

0

0

0

0

1

1

1

–

–

–

–

–

–

–

–

–

–

–

–

– 1

– – – 1

(a) Starting
point

–

–

–

–

g10[3:0]

–

–

–

–– 0

–

–

–

0

0

–

–

1

1

–

–

0

0

–

–

0

0

0

0

1

1

1

–– – 1

–

–

–

–

8

9

–

–

–

–– – 1–

(b) Add two
highest values

1

1

0

0

g10[3:0]

0

0

0

00 0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

1

1

1

10 1 1

4

6

2

0

8

9

1

3

7

10 0 15

(c) Populate
rest of table

FIGURE D.14
The process of sub-2 n consecutive Gray code generation.

1

1

0

0

g10[3:0]

0

0

0

00 0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

1

1

1

1

1

0

0

1

0

1

1

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

0

0

1

1

0

0

0

1

4

6

2

0

8

9

1

3

7

5

Gray code counter Memory array

Address
decoder

FIGURE D.15
Hurray! No “ holes ” in the memory array.

 Next, we start with our highest two addresses (8 and 9, which equate to 1000 2 and
1001 2 in the case of this example) straddling the “mirror line ” [Figure D.14(b)].
And then we populate the rest of the table using smaller values, working out from
the center [Figure D.14(c)]. The result is a 10-sequence Gray code using consecu-
tive addresses of 0000 2 to 1001 2 (0 to 9 in decimal) as illustrated in Figure D.15 .

APPENDIX D406

 I tell you, it amazes me that you have a concept as simple as Gray codes, but
every time you think you know it all, something new comes up that blows your
socks off. Of course, the test case shown here is just a proof-of-concept. We
populated the table by hand, but we don’t yet have an algorithm for this. Can
we extrapolate this to a generic algorithm that allows us to do the same thing
for any non-2 n Gray code sequence? In the case of a 1128-word memory array,
for example, can we algorithmically generate a Gray code sequence that ends
up using sequential addresses of 0 to 1127 in the memory array?

 Once again, I think we’ll leave this as an exercise for the reader (grin).

407

 THE OUROBOROS OF THE DIGITAL CONSCIOUSNESS
 The Ouroboros—a symbol of a serpent or dragon devouring its own tail and
thereby forming a circle—has been employed by a variety of ancient cul-
tures around the world to depict eternity or renewal. 1 The equivalent to the
Ouroboros in the world of electronics would be the Linear Feedback Shift
Register (LFSR), 2 in which the output from a standard shift register is cunningly
manipulated and fed back into its input in such a way as to cause the function
to endlessly cycle through a sequence of patterns.

 MANY-TO-ONE IMPLEMENTATIONS
 LFSRs are simple to construct and are useful for a wide variety of applications.
One of the more common forms of LFSR is formed from a simple shift register
with feedback from two or more points, or taps, in the register chain (Figure E.1).

APPENDIX EAPPENDIX E

 Linear Feedback Shift
Registers (LFSRs)

 1 Not to be confused with the Amphisbaena, a serpent in classical mythology having a head at
each end and capable of moving in either direction.
 2 In conversation, LFSR is spelled out as “ L-F-S-R. ”

0 1 2

Symbol

|

d
q0 q1 q2

q

dff0

XORXOR

d q

dff1

d q

dff2clock

|

FIGURE E.1
LFSR with XOR feedback path.

APPENDIX E408

 The taps in this example are at bit 0 and bit 2, and can be referenced as [0,2].
All of the register elements share a common clock input, which is omitted from
the symbol for reasons of clarity. The data input to the LFSR is generated by
XOR-ing or XNOR-ing the tap bits; the remaining bits function as a standard
shift register. The sequence of values generated by an LFSR is determined by its
feedback function (XOR versus XNOR) and tap selection (Figure E.2).

0 1 2

|

0 1 2

|

0 Initial value

0

1

0

q1Clock edge

0

1

0

1

q0

1

0

0

1

1

1

1

0

–

1

2

3

4

5

6

7

1

1

0

0

0

1

1

1

08 1 0

q2

0 Initial value

0

1

1

q1Clock edge

0

1

1

1

q0

1

0

0

1

1

0

1

0

–

1

2

3

4

5

6

7

0

1

0

0

1

1

0

1

08 1 0

q2

FIGURE E.2
Comparison of alternative tap selections.

 Both LFSRs start with the same initial value but, due to the different tap selec-
tions, their sequences rapidly diverge as clock pulses are applied. In some cases,
an LFSR will end up cycling around a loop comprising a limited number of val-
ues. However, both of the LFSRs shown in Figure E.2 are said to be of maximal
length because they sequence through every possible value (excluding all of the
bits being 0) before returning to their initial values.

 A binary fi eld with n bits can assume 2 n unique values, but a maximal-length
LFSR with n register bits will only sequence through (2 n � 1) values. This is
because LFSRs with XOR feedback paths will not sequence through the value
where all the bits are logic 0, while their XNOR equivalents will not sequence
through the value where all the bits are logic 1 (Figure E.3).

 APPENDIX E 409

 MORE TAPS THAN YOU KNOW WHAT TO DO WITH
 Each LFSR supports a number of tap combinations that will generate maximal-
length sequences. The problem is weeding out the ones that do from the ones
that don’t, because badly chosen taps can result in the register entering a loop
comprising only a limited number of states.

 The author created a simple C program to determine the taps for maximal-
length LFSRs with 2 to 32 bits. These values are presented for your delectation
and delight in Figure E.4 (the “ * ” annotations indicate sequences whose length
is a prime number).

 The taps are identical for both XOR-based and XNOR-based LFSRs, although
the resulting sequence will, of course, differ. As was previously noted, alter-
native tap combinations may also yield maximum-length LFSRs, although
the resulting sequences will vary. For example, in the case of a 10-bit LFSR,
there are two 2-tap combinations that result in a maximal-length sequence:
[2,9] and [6,9]. There are also twenty 4-tap combinations, twenty-eight 6-tap
combinations, and ten 8-tap combinations that satisfy the maximal-length
criteria.

0 1 2

XOR

|

0 1 2

XNOR

|

0 Initial value

0

1

1

q1Clock edge

0

1

1

1

q0

1

0

0

1

1

0

1

0

–

1

2

3

4

5

6

7

0

1

0

0

1

1

0

1

08 1 0

q2

All 1s

All 0s

0 Initial value

0

0

1

q1Clock edge

0

0

1

0

q0

1

0

0

0

0

1

1

0

–

1

2

3

4

5

6

7

1

1

0

0

1

0

1

1

08 0 0

q2

FIGURE E.3
Comparison of XOR versus XNOR feedback paths.

APPENDIX E410

 ONE-TO-MANY IMPLEMENTATIONS
 Consider the case of an 8-bit LFSR, for which the min-
imum number of taps that will generate a maximal-
length sequence is four. In the real world, XOR gates
only have two inputs, so a four-input XOR function
has to be created using three XOR gates arranged as
two levels of logic. Even in those cases where an LFSR
does support a minimum of two taps, for one rea-
son or another you may actually wish to use a greater
number of taps, such as eight (which would result in
three levels of XOR logic).

 The problem is that increasing the levels of logic in the
combinational feedback path can negatively impact
the maximum clocking frequency of the function. One
solution is to transpose the many-to-one implementa-
tions discussed above into their one-to-many counterparts
(Figure E.5).

 The traditional many-to-one implementation for the
eight-bit LFSR has taps at [7,3,2,1]. To convert this
into its one-to-many counterpart, the most-signifi cant
tap (which is always the most signifi cant bit) is fed
back directly into the least signifi cant bit, and is also
individually XOR-ed with the other original taps (bits
[3,2,1] in this example). Note that although both styles
result in maximal-length LFSRs, the actual sequences

of values will differ between them. But the main point is that using the one-
to-many style means that there is never more than one level of combinational
logic in the feedback path, irrespective of the number of taps being employed.

 SEEDING AN LFSR
 One quirk with an XOR-based LFSR is that, if it happens to fi nd itself in the
all 0s value, it will happily continue to shift all 0s indefi nitely (similarly for
an XNOR-based LFSR and the all 1s value). This is of particular concern when
power is fi rst applied to the circuit. Each register bit can randomly initialize,
containing either a logic 0 or a logic 1, and the LFSR can therefore “wake up ”
containing its “forbidden” value. For this reason, it is necessary to initialize an
LFSR with a seed value .

of bits

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Length of loop

15
31
63

127
255
511

1,023
2,047
4,095
8,191

16,383
32,767
65,535

131,071
262,143
524,287

1,048,575
2,097,151
4,194,303
8,388,607

16,777,215
33,554,431
67,108,863

134,217,727
268,435,455
536,870,911

1,073,741,823
2,147,483,647

∗
∗

∗

∗

∗

∗

∗

∗
4,294,967,295

Taps

[0,1]
[0,2]
[0,3]
[1,4]
[0,5]
[0,6]

[1,2,3,7]
[3,8]
[2,9]

[1,10]
[0,3,5,11]
[0,2,3,12]
[0,2,4,13]

[0,14]
[1,2,4,15]

[2,16]
[6,17]

[0,1,4,18]
[2,19]
[1,20]
[0,21]
[4,22]

[0,2,3,23]
[2,24]

[0,1,5,25]
[0,1,4,26]

[2,27]
[1,28]

[0,3,5,29]
[2,30]

[1,5,6,31]

3
7

FIGURE E.4
Example taps for
maximal length LFSRs
with 2 to 32 bits.

 APPENDIX E 411

(a) Many-to-one implementation

0 1

I

I

I

2

XOR

XOR

XOR

XOR

XOR XOR

3 4 5 6 7

(b) One-to-many implementation

0 1 2 3 4 5 6 7

FIGURE E.5
 Many-to-one versus one-to-many LFSR implementations.

 One method for loading a seed value is to use registers with
reset and/or set inputs. A single control signal can be connected
to the reset inputs on some of the registers and the set inputs on
others. When this control signal is placed in its active state, the
LFSR will load with a hard-wired seed value. In certain applica-
tions, however, it is desirable to be able to vary the seed value.
One technique for achieving this is to include a multiplexer at
the input to the LFSR (Figure E.6).

 When the multiplexer’s data input is selected, the device functions as a standard
shift register, and any desired seed value may be loaded. After loading the seed
value, the feedback path is selected and the device returns to its LFSR mode of
operation.

 FIFO APPLICATIONS
 The fact that an LFSR generates an unusual sequence of values is irrelevant in
many applications. Consider a 4-bit � 16-word First-In First-Out (FIFO) mem-
ory as illustrated in Figure E.7 .

 A brief summary of the FIFO’s operation is as follows. The write and read point-
ers are essentially 4-bit registers whose outputs are processed by 4:16 decoders
to select one of the sixteen words in the memory array. The reset input is used
to initialize the device, primarily by clearing the write and read pointers such
that they both point to the same memory word. The initialization also causes

0 1 2

XOR

|

0

MUX

1
data

select

FIGURE E.6
 Circuit for loading
different seed values.

APPENDIX E412

the empty output to be placed in its active state and the full output to be placed
in its inactive state. 3

 The write and read pointers chase each other around the memory array in an
endless loop. An active edge on the write input causes any data on the data-
in[3:0] bus to be written into the word pointed to by the write pointer. The
empty output is placed in its inactive state (because the device is no longer
empty) and the write pointer is incremented to point to the next empty word.

 Data can be written into the FIFO until all the words in the array contain val-
ues. When the write pointer catches up to the read pointer, the full output is
placed in its active state (indicating that the device is full) and no more data
can be written into the device.

 An active edge on the read input causes the data in the word pointed to by the
read pointer to be copied into the output register, from whence it appears on

data-out[3:0]

emptyfullresetreadwrite

data-in[3:0]

Output
registers

Control logic

Write pointer

4:16 decoder

4:16 decoder
Read pointer

0000

0010

0100

0110

1000

1010

1100

1110

1111

0001

0011

0101

0111

1001

1011

1101

0000

0010

0100

0110

1000

1010

1100

1110

1111

0001

0011

0101

0111

1001

1011

1101

FIGURE E.7
First-In First-Out (FIFO) memory.

 3 More-sophisticated versions may have additional signals, such as nearly-full and
nearly-empty .

 APPENDIX E 413

the data-out[3:0] signals. The full output is placed in its inactive state and the
read pointer is incremented to point to the next word containing data. 4

 Data can be read out of the FIFO until the array is empty. When the read
pointer catches up to the write pointer, the empty output is placed in its active
state, and no more data can be read out of the device.

 The write and read pointers for a 16-word FIFO are often implemented using
4-bit binary counters. 5 However, a moment’s refl ection reveals that there is no
intrinsic advantage to a binary sequence for this particular application, and the
sequence generated by a 4-bit LFSR would serve equally well. In fact, the two
functions operate in a very similar manner, as is illustrated by their block dia-
grams (Figure E.8).

 4 These discussions assume the use of write-and-increment and read-and-increment tech-
niques, but we should note that some FIFOs employ an increment-and-write and incre-
ment-and-read approach.
 5 The implementation of a 4-bit binary counter was discussed in Chapter 11: Slightly More
Complex Functions .

Feedback
logic

clock

Current
value

Next
value

(a) 4-bit binary counter

Registers

Feedback
logic

clock

Current
value

Next
value

(b) 4-bit LFSR

Registers

FIGURE E.8
Block diagrams of a binary counter and an LFSR.

 However, the combinational logic for the 4-bit LFSR consists of a single, two-
input XOR gate, while the combinational logic for the 4-bit binary counter
requires a number of AND and OR gates. This means that the LFSR requires
fewer tracks (wires) and is more effi cient in terms of silicon real estate.
Additionally, the LFSR’s feedback only passes through a single level of logic,
while the binary counter’s feedback passes through multiple levels of logic.
This means that the new data value is available sooner for the LFSR, which can
therefore be clocked at a higher frequency. These differentiations become even

APPENDIX E414

more pronounced for FIFOs with more words requiring pointers with more
bits. Thus, LFSR’s may be a very attractive choice for the discerning designer of
FIFOs.

 MODIFYING LFSRS TO SEQUENCE 2 n VALUES
 One downside to the 4-bit LFSRs in the FIFO scenario above is that they will
sequence through only 15 values (2 4 � 1), as compared to the binary coun-
ter’s sequence of 16 values (2 4). Designers may not regard this to be a problem,
especially in the case of larger FIFOs. However, if it is required that an LFSR
sequence through every possible value, there is a simple solution (Figure E.9).

0

XOR

NOR

1 2 3

|

|

0

All 0’s

24 � 16 values

0

0

1

q1Clock edge

0

0

1

1

q0

0

0

0

0

1

1

1

0

–

1

2

3

4

5

6

7

1

1

0

1

1

1

1

1

18 0 0

0

1

1

1

1

0

1

0

1

0

0

1

0

9

10

11

12

13

14

15

0

1

0

0

1

0

0

1

016 0 0

q2

1

0

0

0

q3

0

1

1

1

1

0

1

0

1

1

0

0

1

FIGURE E.9
LFSR modifi ed to sequence through 2 n values.

 6 As is often the case with any form of shift register, the MSB in these examples is taken to be
on the right-hand side of the register, and the LSB is taken to be on the left-hand side (this
is opposite to the way we usually do things).

 For the value for which all of the bits are logic 0 to appear, the preceding value
must have comprised a logic 1 in the Most-Signifi cant Bit (MSB) 6 and logic 0s in
the remaining bit positions. In an unmodifi ed LFSR, the next clock would result
in a logic 1 in the Least-Signifi cant Bit (LSB) and logic 0s in the remaining bit

 APPENDIX E 415

positions. In the modifi ed LFSR, however, the output from the NOR is a logic 0 for
every case but two: the value preceding the one where all the bits are 0, and the
value where all the bits are 0. These two values force the NOR’s output to a logic
1, which inverts the usual output from the XOR. This in turn causes the sequence
to fi rst enter the all-0s value and then resume its normal course. (In the case of
LFSRs with XNOR feedback paths, the NOR can be replaced with an AND, which
causes the sequence to cycle through the value where all of the bits are logic 1.)

 ACCESSING AN LFSR’S PREVIOUS VALUE
 In some applications, it is required to make use of a register’s previous value.
In certain FIFO implementations, for example, the “ full ” condition is detected
when the write pointer is pointing to the location preceding the location
pointed to by the read pointer. 7 This implies that a comparator must be used
to compare the current value in the write pointer with the previous value in the
read pointer. Similarly, the “empty ” condition may be detected when the read
pointer is pointing to the location preceding the location pointed to by the
write pointer. This implies that a second comparator must be used to compare
the current value in the read pointer with the previous value in the write pointer.

 In the case of binary counters, there are two tech-
niques by which the previous value in the sequence
may be accessed. The fi rst requires the provision of an
additional set of so-called shadow registers. Every time
the counter is incremented, its current contents are
fi rst copied into the shadow registers. Alternatively,
a block of combinational logic can be used to
decode the previous value from the current value.
Unfortunately, both of these techniques involve a
substantial overhead in terms of additional logic. By
comparison, LFSRs inherently remember their previous value. All that is required
is the addition of a single register bit appended to the MSB (Figure E.10).

 ENCRYPTION AND DECRYPTION APPLICATIONS
 The unusual sequence of values generated by an LFSR can be gainfully
employed in the encryption (scrambling) and decryption (unscrambling) of
data. For example, a stream of data bits can be encrypted by XOR-ing them
with the output from an LFSR (Figure E.11).

 7 Try saying that quickly!

0

XOR

1 2 3

Additional register bit
appended to MSBI

Current value

Previous value

FIGURE E.10
Accessing an LFSR’s
previous value

APPENDIX E416

 The stream of encrypted data bits seen by a receiver can be decrypted by XOR-
ing them with the output of an identical LFSR. 8

 CYCLIC REDUNDANCY CHECK (CRC) APPLICATIONS
 A traditional application for LFSRs is in Cyclic
Redundancy Check (CRC) calculations, which can
be used to detect errors in data communications.
In this case, the stream of data bits being transmit-
ted is used to modify the values fed back into an
LFSR (Figure E.12).

 The fi nal CRC value stored in the LFSR is known
as a checksum, and is dependent on every bit in
the data stream. After all of the data bits have

been transmitted, the transmitter sends its checksum value to the receiver.
The receiver contains an identical CRC calculator and generates its own check-
sum value from the incoming data. Once all of the data bits have arrived, the
receiver compares its internally generated checksum value with the checksum
sent by the transmitter in order to determine whether any corruption occurred
during the course of the transmission. This form of error detection is very effi -
cient in terms of the small number of bits that have to be transmitted in addi-
tion to the data.

 In the real world, a 4-bit CRC calculator would not be considered to provide
suffi cient confi dence in the integrity of the transmitted data. This is due to the

0 1 2

XOR

3

data

LFSR

XOR encrypted
data

(to receiver)

LFSR

data

encrypted
data

I

I

FIGURE E.11
Data encryption using an LFSR.

0 1 2

XOR

3

data to receiver

I

FIGURE E.12
Cyclic Redundancy
Check (CRC)
calculation.

 8 The rudimentary example presented here is obviously a very trivial form of encryp-
tion that’s not very secure, but it’s “cheap-and-cheerful” and may be useful in certain
applications.

 APPENDIX E 417

fact that a 4-bit LFSR can only represent 16 unique values, which means that
there is a signifi cant probability that multiple errors in the data stream could
result in the two checksum values being identical. As the number of bits in
a CRC calculator increases, however, the probability that multiple errors will
cause identical checksum values approaches zero. For this reason, CRC calcula-
tors typically use a minimum of 16-bits providing 65,536 unique values.

 There is a variety of standard communications protocols, each of which speci-
fi es the number of bits employed in their CRC calculations and the taps to be
used. The taps are selected such that an error in a single data bit will cause the
maximum possible disruption to the resulting checksum value. Thus, in addi-
tion to being referred to as maximal-length, these LFSRs may also be qualifi ed as
maximal-displacement.

 DATA COMPRESSION APPLICATIONS
 The CRC calculators discussed in the previous topic can also be used in a data
compression role. One such application is found in the circuit board test strat-
egy known as functional test. In this case, the board is plugged into a functional
tester by means of its edge connector. The tester applies a pattern of signals to
the board’s inputs, allows suffi cient time for any effects to propagate around
the board, and then compares the actual values seen on the outputs with a set
of expected values stored in the system. This process is repeated for a series
of input patterns, which may number in the tens or hundreds of thousands
(Figure E.13).

From
tester

To
tester

Functional

tester

FIGURE E.13
Simplifi ed representation of a functional board test scenario.

APPENDIX E418

 The illustration above is simplifi ed for reasons of clarity. In
practice, the edge connector may contain hundreds of pins
while the board may contain thousands of components
and tracks (wires). If the board fails the preliminary tests,
a more sophisticated form of analysis known as guided
probe may be employed to identify the cause of the failure
(Figure E.14).

 The idea here is that the functional tester instructs the
operator to place the probe at a particular location on
the board, and then the entire sequence of test patterns is
rerun. The tester compares the actual sequence of values

seen by the probe with a sequence of expected values that are stored in the
system. This process (placing the probe and running the tests) is repeated until
the tester has isolated the faulty component or track.

 A major consideration when supporting a guided probe strategy is the amount
of expected data that must be stored. Consider a test sequence comprising
10,000 patterns, driving a board containing 10,000 tracks. If the data were not
compressed, the system would have to store 10,000 bits of expected data per
track, which amounts to 100,000,000 bits of data for the board. Additionally,
for each application of the guided probe, the tester would have to compare the
10,000 data bits observed by the probe with the 10,000 bits of expected data
stored in the system. Thus, using data in an uncompressed form is an expensive
option in terms of storage and processing requirements.

 One solution to these problems is to employ LFSR-based CRC calculators. The
sequence of expected values for each track can be passed through a 16-bit CRC
calculator implemented in software. Similarly, the sequence of actual values
seen by the guided probe can be passed through an identical CRC calculator
implemented in hardware. In this case, the calculated checksum values are also
known as signatures, and a guided probe process based on this technique is
known as signature analysis. Irrespective of the number of test patterns used, the
system has to store only two bytes of data for each track. Additionally, for each
application of the guided probe, the tester has to compare only the two bytes
of data gathered by the probe with two bytes of expected data stored in the sys-
tem. The end result is that compressing the data results in storage requirements
that are orders of magnitude smaller—and comparison times that are orders of
magnitude faster—than the uncompressed data approach.

Functional

tester

Probe

FIGURE E.14
Guided probe analysis.

 APPENDIX E 419

 BUILT-IN SELF-TEST (BIST) APPLICATIONS
 One test strategy that may be employed in complex integrated circuits is that of
Built-in Self-Test (BIST). 9 Devices using BIST contain special test generation and
result gathering circuits (Figure E.15).

 9 There are several specialized versions of BIST; for example, Logic Built-in Self-Test (LBIST)
and Memory Built-in Self-Test (MBIST). We’re focusing on LBIST in these discussions.
 10 The standard inputs and outputs (along with their multiplexers) have been omitted from
Figure E.16 in order to keep things simple.

Inputs

Outputs

Logic

(a) Without BIST

Inputs
Input

multiplexer

Output
multiplexer

Test
generator

Results
gatherer

(b) With BIST

Outputs

Logic

FIGURE E.15
Built-In Self-Test (BIST).

 A multiplexer is used to select between the standard inputs and those from a
test generator. A second multiplexer selects between the standard outputs and
those from a results gatherer. The point is that both the test generator and results
gatherer can be implemented using LFSRs (Figure E.16). 10

 The LFSR forming the test generator is used to create a sequence of test pat-
terns, while the LFSR forming the results gatherer is used to capture the results.
The results-gathering LFSR features modifi cations that allow it to accept paral-
lel data. (Note that the two LFSRs are not obliged to contain the same number
of bits, because the number of inputs to the logic being tested may be different
from the number of outputs from the logic.)

 Once the self-test has been run, the contents of the results gathering LFSR can
be compared to a known-good value to determine if the core logic is function-
ing as expected.

APPENDIX E420

XOR

d q

Test generator LFSR

Logic
(being tested)

dff

d q

dff

d q

dff

d q

dff

d q

dff

d q

dff

d q

dff

d q

dff

I

XOR
I

XOR XOR XOR

XOR
I

Results gatherer LFSR

II I

FIGURE E.16
BIST implemented using LFSRs.

 11 Digital simulation is based on a program called a logic simulator, which is used to build a
virtual representation of an electronic design in the computer’s memory. The simulator then
applies stimulus to the design’s virtual inputs, simulates the effect of these signals as they
propagate through the design, and checks the responses at the design’s virtual outputs.

 PSEUDO-RANDOM NUMBER APPLICATIONS
 Many computer programs rely on an element of randomness. Computer games
such as “Space Invaders ” employ random events to increase the player’s enjoy-
ment. Graphics programs may exploit random numbers to generate intricate
patterns. All forms of computer simulation may utilize random numbers to
more accurately represent the real world. For example, digital simulations 11

 APPENDIX E 421

may benefi t from the portrayal of random stimulus such as external interrupts.
Random stimulus can result in more realistic design verifi cation, which can
uncover problems that may not be revealed by more structured tests.

 Random number generators can be constructed in both hardware and soft-
ware. The majority of these generators are not truly random, but they give the
appearance of being random and are therefore said to be pseudo-random. In
fact, pseudo-random numbers have an advantage over truly random numbers,
because the majority of computer applications typically require repeatability.
For example, a designer repeating a digital simulation would expect to receive
answers identical to those from the previous run. However, designers also need
the ability to modify the seed value of the pseudo-random number generator
so as to spawn different sequences of values as required.

 There is a variety of methods available for generating pseudo-random numbers.
A popular cheap-and-cheerful technique uses the remainder from a division
operation as the next value in a pseudo-random sequence. For example, a C
function that returns a pseudo-random number in the range 0 to 32767 could
be written as follows: 12

 int rand ()
 {
 next � next * 1103515245 � 12345;
 return (unsigned int) (next/65535) % 32768;
 }

 The variable next would be declared as global and initialized with some seed
value. Also, an additional function would be provided to allow the program-
mer to load next with a new seed value if required. Every time our rand
function is accessed it returns a new pseudo-random value. Unfortunately,
pseudo-random implementations based on division do not always produce a
 “ white spectrum. ” The series of generated values may be composed of a collec-
tion of subseries, in which case the results will not be of maximal length. By
comparison, the sequence of values generated by a software implementation of
a maximal-length LFSR provides a reasonably good pseudo-random source, but
is somewhat more expensive in terms of processing requirements.

 12 This example came from The C Programming Language (2nd ed.), by Brian W. Kernighan
and Dennis M. Ritchie.

APPENDIX E422

 LAST BUT NOT LEAST
 LFSRs are simple to construct and are useful for a wide variety of applications,
but be warned that choosing the optimal polynomial (which ultimately boils
down to selecting the optimal tap points) for a particular application is a task
that is usually reserved for a master of the mystic arts. The math behind this
can be hairy enough to make a grown man break down and cry (and don’t
even get me started on the subject of cyclotomic polynomials , 13 which are key to
the tap-selection process).

 13 Mainly because I don’t have the faintest clue as to what a cyclotomic polynomial is!

423

 “ WOULD YOU PASS THE LOGIC, PLEASE? ”
 The term pass-transistor logic refers to techniques for connecting MOSFET tran-
sistors such that “ data ” signals pass between their source and drain terminals.
These techniques minimize the number of transistors required to implement a
function, but they are not recommended for the novice or the unwary because
strange and unexpected effects can ensue. Pass-transistor logic is typically
employed by designers of full-custom integrated circuits or ASIC cell librar-
ies. The following examples introduce the concepts of pass-transistor logic, but
they are not intended to indicate recommended design practices.

 In the case of the AND (Figure F.1), the resistance of R 1 is assumed to be suf-
fi ciently high that its effect on output y is that of a very weak logic 0. When
input b is presented with a logic 0, the NMOS transistor Tr 1 is turned OFF and
y is “pulled down ” to logic 0 by resistor R 1. When input b is set to logic 1, Tr 1 is
turned ON and output y is connected to input a. In this case, a logic 0 on input
a leaves y at logic 0, but a logic 1 on input a will overdrive the effect of resistor
R 1 and force y to a logic 1.

 APPENDIX F APPENDIX F

 Pass-Transistor Logic

y
a

b

AND

a

b

Tr1

R1

VSS (Logic 0)

y
0

0

1

1

a

0

1

0

1

0

0

0

1

b y

&

FIGURE F.1
Pass-transistor implementation of an AND gate.

 In the case of the OR (Figure F.2), the resistance of R 1 is assumed to be suffi ciently
high that its effect on output y is that of a very weak logic 1. A logic 1 applied to
input b turns the PMOS transistor Tr 1 OFF and output y is “pulled up ” to logic 1

APPENDIX F424

by resistor R 1. When input b is presented to logic 0, Tr 1 is turned ON and output y
is connected to input a. In this case, a logic 1 on input a leaves y at logic 1, but a
logic 0 on input a will overdrive the effect of resistor R 1 and force y to a logic 0.

y
a

b

OR

a

b

Tr1

R1

VDD (Logic 1)

y
0

0

1

1

a

0

1

0

1

0

1

1

1

b y

I

FIGURE F.2
Pass-transistor implementation of an OR gate.

y
a

b

XOR

a

b

Tr1

Tr2

R1

VSS (Logic 0)

y0

0

1

1

a

0

1

0

1

0

1

1

0

b y

I

FIGURE F.3
Pass-transistor implementation of an XOR gate.

 In the case of the XOR (Figure F.3), logic 1s applied to inputs a and b turn Tr 1 and
Tr 2 OFF, respectively, leaving output y to be “pulled down ” to logic 0 by resistor
R 1 When input b is presented with a logic 0, Tr 1 is turned ON and output y is con-
nected to input a. In this case, a logic 0 on input a leaves y at logic 0 , but a logic 1
on input a will overdrive the effect of resistor R 1 and force y to a logic 1. Similarly,
when input a is presented with a logic 0 , Tr 2 is turned ON and output y is con-
nected to input b. In this case, a logic 0 on input b leaves y at logic 0, but a logic 1
on b will overdrive the effect of resistor R 1 and force y to a logic 1 (phew!).

 The case of the XNOR (Figure F.4) is simply the inverse of that for the XOR.
Logic 0s applied to inputs a and b turn transistors Tr 1 and Tr 2 OFF, leaving out-
put y to be “pulled up ” to logic 1 by resistor R 1. When input b is set to logic 1,
Tr 1 is turned ON and output y is connected to input a. In this case, a logic 1 on
input a leaves y at logic 1, but a logic 0 on input a will overdrive the effect of
resistor R 1 and force y to a logic 0. Similarly, when input a is set to logic 1, Tr 2 is
turned ON and output y is connected to input b. In this case, a logic 1 on input b
leaves y at logic 1, but a logic 0 on b will overdrive the effect of resistor R 1 and
force y to a logic 0.

 APPENDIX F 425

 Before examining the pass-transistor implementation of a D-type latch with an
active-high enable shown in Figure F.5 , we should briefl y review our defi nition
of these functions. First, when the enable input is in its active state (a logic 1),
the value on the data input is passed through the device to appear on the q and
~ q outputs. 1 Second, if the data input changes while the enable input remains
active, the outputs will respond to refl ect the new value. Third, when the enable
input is driven to its inactive state, the outputs remember their previous values
and no longer respond to any changes on the data input.

y
a

b

XNOR

a

b

Tr1

Tr2

R1

VDD (Logic 1)

y0

0

1

1

a

0

1

0

1

1

0

0

1

b y

I

FIGURE F.4
Pass-transistor implementation of an XNOR gate.

D-latch

data

enable

q

~q

enable data q(n�)

q(n)
0
1

1
0

data

enable

Tr1

g6

g7

Tr2

g5

g4

g3g2

g1

~q(n�)

~q

q

~q(n)0
1 0
1 1

?
FIGURE F.5
Pass-transistor
implementation of a
D-type latch.

 1 As usual, the data appears in inverted form on the ~ q (complementary) output.
 2 Observe the use of assertion-level logic symbols for gates g3, g4, and g6 in Figure F.5. These
symbols were introduced in Appendix A: Assertion-Level Logic.
 3 Observe the use of the tilde “ � ” character to indicate the complementary output ~ q. The
use of tildes was discussed in Appendix A: Assertion-Level Logic .

 Now onto the pass-transistor implementation itself. 2 When the enable input is
in its active state, the output from gate g2 turns transistor Tr 1 ON, and the out-
put from g3 turns transistor Tr 2 OFF. Thus, the value on the data input passes
through g1, Tr 1, and g6 to appear on the q output, and through g1, Tr 1, g4, and
g7 to appear at the ~ q output. 3 Any changes on the data input will be refl ected

APPENDIX F426

on the q and ~ q outputs after the delays associated with the gates and transis-
tors have been satisfi ed.

 Now, when the enable input is driven to its inactive state, the output from g2

turns Tr 1 OFF and the output from g3 turns Tr 2 ON. Disabling Tr 1 blocks the
path from the data input, while enabling Tr 2 completes the self-sustaining loop
formed by g4 and g5. It is this feedback loop that acts as the “memory” for the
device.

 Compare this pass-transistor implementation with its standard counterpart
introduced in Chapter 11: Slightly More Complex Functions. The standard imple-
mentation required one NOT, two ANDs, and two NORs, totaling twenty-two
transistors. By comparison, the pass-transistor implementation requires two
discrete transistors and seven NOTs, totaling only sixteen transistors. In fact,
the heart of the pass transistor implementation comprising Tr 1, Tr 2, g3, g4, and
g5 requires only eight transistors. The remaining gates (g1, g2, g6, and g7) are
used only to buffer the latch’s input and outputs from the outside world. 4

 4 NOT gates are used in preference to BUFs for this role because NOTs require fewer transis-
tors and are faster (these considerations were introduced in Chapter 6: Using Transistors to
Build Logic Gates).

427

 P-N JUNCTIONS, DEPLETION ZONES, AND DIODES
 Do you recall way back in the mists of time [known as Chapter 4: Semiconductors
(Diodes and Transistors)] when we fi rst introduced the concept of a semiconduc-
tor diode? This was formed by doping a piece of silicon such that one part was
P-type and the other was N-type (Figure G.1). As we discussed, the resulting
p-n junction conducts electricity in only one direction: in the other direction it
behaves like an OPEN (OFF) switch.

APPENDIX GAPPENDIX G

 More on Semiconductors

�ve

�ve

doesn’t
conduct

Semiconductor
diode

P-type
silicon

�ve

�ve

does
conduct
(arrow
indicates
“classical”
direction
of current
flow)

N-type
silicon

N-type
silicon

P-type
silicon

FIGURE G-1
 Creating a diode from P-type and N-type silicon.

 However, we sort of “glossed over ” the way in which this actually works, so let’s
consider this in a little more detail. Let’s start off with a piece of pure silicon
[Figure G.2(a)]. First, we’ll dope one-half of the silicon with phosphorus to cre-
ate N-type silicon [Figure G.2(b)]. Since phosphorous atoms have fi ve electrons
in their outermost electron shells, the site (location) of a phosphorous atom in
the silicon crystal matrix will donate an electron with relative ease, and we can
visualize this site as being “ sort-of ” negative.

APPENDIX G428

 Next, we’ll dope the other half of the silicon with boron to create P-type silicon
[Figure G.2(c)]. Since boron atoms have three electrons in their outermost
electron shell, they can only make bonds with three of the silicon atoms sur-
rounding them. This leaves the fourth silicon atom unsated and eager to fi ll
its outermost electron shell. Thus, the site occupied by a boron atom in the
silicon crystal will accept a free electron with relative ease, and we can visualize
this site (which is called a hole) as being “sort-of” positive.

 So, the N-type silicon has an excess of free electrons and the P-type silicon has
an excess of holes. Electrons and holes are both charge carriers, which means
that both the N-type and P-type silicon can conduct. However, something
interesting occurs at the p-n junction, because the electrons and holes cancel
each other out, thereby depleting this area of any free charge carriers, leaving
none to carry a current. The resulting insulating area is known as the depletion
region or the depletion zone [Figure G.2(d)]. 1

(a) Pure silicon (b) Form N-type (c) Form P-type (d) Depletion Zone

�
�

�
� � �

� �
� �

�

�

�

�� �
� � �

� � � �

�
� � � � �

�����

� � � � �

�

�
�

�

�

�

�
�

�

�
�

�

�

FIGURE G.2
 Creating a p-n junction.

 1 This area may also be referred to as the junction region or the space charge region.

 Now, let’s assume that we add metal contacts and wires to the silicon on either
end of our diode [Figure G.3(a)]. Suppose we apply a positive (�ve) potential
to the wire connected to the N-type silicon and a negative (�ve) potential to
the wire connected to the P-type silicon [Figure G.3(b)]. In this case, the posi-
tive potential connected to the N-type silicon attracts the electrons in the N-type
silicon and repels the holes in the P-type silicon. Similarly, the negative poten-
tial connected to the P-type silicon attracts the holes in the P-type silicon and
repels the electrons in the N-type silicon. The result is to increase the size of the
insulating depletion zone, thereby preventing the diode from conducting.

 By comparison, consider what happens if we apply a negative (�ve) potential
to the wire connected to the N-type silicon and a positive (�ve) potential to the
wire connected to the P-type silicon [Figure G.3(c)]. In this case, the negative
potential connected to the N-type silicon repels the electrons in the N-type
silicon and attracts the holes in the P-type silicon. Similarly, the positive potential
connected to the P-type silicon repels the holes in the P-type silicon and

 APPENDIX G 429

attracts the electrons in the N-type silicon. The result is to reduce the size of the
depletion zone until it breaks down (in a nondestructive way), thereby allow-
ing the diode to conduct.

 We can also use p-n junctions to create more complex components called transistors .
As we discussed in Chapter 4: Semiconductors (Diodes and Transistors), the fi rst
Bipolar Junction Transistor (BJT) was constructed in 1947. For the purposes of our
discussions here, however, we are going to focus on Field Effect Transistors (FETs).

 JUNCTION FETS (JFETS) AND MESFETS
 Junction Field-Effect Transistors (JFETs or JUGFETs) were fi rst analyzed by William
Shockley at Bell Labs in 1952. The following year, the fi rst working device was
realized by two members of Shockley’s team: G. C. Dacey and Ian Munro Ross.

 Junction FETs are so-named because they are formed by the junction of P-type
and N-type silicon, as illustrated in Figure G.4 . We can think of the drain and
source as forming “ data ” terminals and the gate acting as the “control ” terminal.
Observe that, when no signal is being applied to the gate terminal, the default
depletion region [Figure G.4(a)] still leaves a channel of N-type silicon between
the source and the drain, thereby allowing current to fl ow. 2 This means that
these devices are ON by default and we have to apply a signal to the gate termi-
nal in order to turn them OFF .

(a) Add contacts
and wires

(b) Increase zone,
doesn’t conduct

(c) Decrease zone,
conducts

�ve �ve

Arrow indicates
actual direction
of current flow.

�ve�ve

�

�

�

�
�

�

�

� �
�

�
�

�
�

�
� � � �

����
��

� � � � �

� � � � � �

�

�
�

��

�
�

��
�

�

��

��
��

� � � �

����

� � � � �

� � � � � �

FIGURE G.3
 Applying electric potentials to our p-n junction.

 2 Actually, since current is defi ned as “the fl ow of electrons, ” purists would say that phrases like
 “ … allowing current to fl ow … ” is redundant and/or incorrect, because they would read this as
“ … allowing the fl ow of electrons to fl ow … ” Personally, I really don’t care, and it’s my book,
so there!

APPENDIX G430

 If we apply a small negative potential to the gate terminal [Figure G.4(b)], the
electrons on the gate attract the positive holes in the P-type silicon and repel the
negative electrons in the N-type silicon. Much like pinching a garden hosepipe to
reduce the fl ow of water, this reduces the size of the conducting channel between
the source and the drain terminals. In turn, this increases the resistance of the chan-
nel and reduces the fl ow of current between the source and the drain terminals.

 If we keep on increasing the negative potential on the gate terminal, at some
stage the depletion zone will completely block the channel as illustrated in
 Figure G.4(c) .

 Observe that the transistor shown in Figure G.4 is an n-channel device. We can
also create an equivalent p-channel component by swapping the P-type and N-
type diffusion regions.

 JFETs have good linearity and low noise, and they are used almost entirely for pro-
cessing analog signals. Typical applications include low-level audio amplifi cation
and Radio Frequency (RF) circuits such as RF mixers. JFETs also have a very high
input impedance, which makes them suitable for applications like test equipment
because they have minimal disturbance on the signals being measured.

 We should also note that the MESFETs (Metal-Epitaxial Semiconductor Field-Effect
Transistors) that were briefl y mentioned in Chapter 4: Semiconductors (Diodes and
Transistors) are similar to JFETs in construction and terminology. The difference is
that, instead of using a p-n junction for a gate, a Schottky (metal-semiconductor)
junction is employed. With the ability to switch at rates measured in tens of
gigahertz (GHz), MESFETs are signifi cantly faster than silicon-based JFETs and so

Drain

Source

Gate

P-type N-type Depletion
region

��� ���

(a)
Current
flows

Drain

Source

Gate

��� ���

(b)
Smaller
current

�

�

Drain

Source

Gate

��� ���

��� ������ ������ ���

(c)
No

current
�
�

�
�

Metal
(conductor)

FIGURE G.4
 N-channel junction FET
(JFET).

 APPENDIX G 431

they are commonly used for applications like microwave frequency communica-
tions and radar.

 DEPLETION-MODE MOSFETS
 As we discussed in Chapter 4: Semiconductors (Diodes and Transistors), as far back
as 1928, the Austro-Hungarian scientist Dr. Julius Edgar Lilienfi eld (1882–
1963) applied for US Patent 1,900,018 in which he described what we would
now recognize as a depletion-mode MOSFET (Metal-Oxide Semiconductor Field-
Effect Transistor).

 As we see in Figure G.5 , the depletion-mode MOSFET is conceptually the
easiest to understand of all of the members of the fi eld-effect transistor family.

N-type Depletion
region

Metal
(conductor)

Source

Gate (a)
Current
flows

Drain

Source

Gate (b)
Smaller
current

�

�

Drain

Source

Gate (c)
No

current
�
�

�
�

Source
Drain

Silicon dioxide (insulator)

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� FIGURE G.5
 Depletion-mode
n-channel MOSFET.

 The control terminal is connected to a conducting plate, which is insulated
from the silicon by a layer of nonconducting oxide. In the original devices
the conducting plate was metal—hence, the term “ metal-oxide ” —but this is
now something of a misnomer because modern versions tend to use a layer of
polycrystalline silicon (polysilicon). When a signal is applied to the gate terminal,
the plate, insulated by the oxide, creates an electromagnetic fi eld, which turns
the transistor ON or OFF —hence, the term “ fi eld-effect. ”

 When no signal is being applied to the gate, the channel of N-type silicon
between the source and the drain allows current to fl ow. This means that these
devices are ON by default and we have to apply a signal to the gate terminal in
order to turn them OFF .

APPENDIX G432

 If we apply a small negative potential to the gate terminal [Figure G.5(b)], the
electrons on the gate repel the negative electrons in the N-type silicon. This
leaves an area depleted of electron charge carriers, so we still refer to this as
being a depletion region, even though it’s not being formed by a p-n junction.

 Once again, we can think of this as pinching a garden hosepipe to reduce the
fl ow of water. Applying a negative potential to the gate terminal reduces the
size of the conducting channel between the source and the drain. In turn, this
increases the resistance of the channel and reduces the fl ow of current between
the source and the drain terminals. If we keep on increasing the negative poten-
tial on the gate terminal, at some stage the depletion zone will completely
block the channel as illustrated in Figure G.5(c) .

 Observe that the transistor shown in Figure G.5 is an n-channel device. We can
also create an equivalent p-channel component by swapping the P-type and
N-type diffusion regions.

 Depletion-mode FETs can be used for a variety of purposes—typically in the
processing of analog signals—acting as voltage-controlled resistors, for example.

 ENHANCEMENT-MODE MOSFETS
 As you may surmise from peeking at Figure G.6 , the enhancement-mode
MOSFET is conceptually the hardest to understand of all of the members of the
fi eld-effect transistor family. Enhancement-mode MOSFETs are formed from
two p-n-junctions, which act like two back-to-back diodes. This means that, by

Silicon dioxide (insulator)

(a)
No

current

Drain

Source

Gate (c)
Larger
current

�

�

�

�

Enhanced N-channel

P-type N-type
Depletion
region

Metal
(conductor)

Drain

Source

Gate

Drain

Source

Gate (b)
Small
current

�

�

��� ������ ������ ���

��� ��� ��� ��� ��� ���FIGURE G.6
 Enhancement-mode
N-channel MOSFET.

 APPENDIX G 433

default, this device is OFF and we have to apply an electrical potential to its
gate terminal to turn it ON .

 The MOSFET illustrated in Figure G.6 is an n-channel device (we could, of
course, create its p-channel counterpart by swapping the P-type and N-type dif-
fusion regions). This may be a little confusing at a fi rst glance, because the term
“channel ” refers to the piece of silicon under the gate terminal that links the
source and drain regions. As we see, this is formed from P-type material in our
n-channel device.

 Happily, there is reason behind the madness. In order to turn our n-channel
device ON, a positive voltage is applied to the gate. This positive voltage repels
positive holes and attracts negative electrons in the P-type material. The electrons
accumulate beneath the oxide layer, where they form a negative channel—
hence, the term “ n-channel. ”

 Enhancement-mode MOSFETs are the most widely used member of the FET
family, fi nding application in both analog and digital circuits, especially in
today’s digital integrated circuits, the largest of which may literally contain
billions of these transistors.

This page intentionally left blank

435

 INTRODUCTION
 We all remember being taught the concept of rounding in our younger years at
school. Common problems involved monetary values, such as rounding some
amount like $26.19 to the nearest dollar (which would be 26 dollars, in the
case of this example). However, although this may seem simple at a fi rst glance,
there’s a lot more to rounding than might at fi rst meet the eye …

 One key aspect of rounding that is easy to overlook (because it’s so obvious) is
that it involves transforming some quantity from a greater precision to a lesser
precision. As we’ve just seen, for example, rounding a more precise value like
$26.19 to the nearest dollar results in 26 dollars, which is less precise.

 This means that if we have to perform rounding, we would prefer to use an
algorithm 1 that minimizes the effects of this loss of precision. We especially
wish to minimize the loss of precision if we are performing some procedure
that involves cycling around a loop performing a series of operations (includ-
ing rounding) on the same data, over and over again. If we fail, the result will
be so-called creeping errors, which refers to errors that increase over time as we
iterate around the loop.

 So how hard can this be? Well, in fact, things can become quite interesting,
because there is a plethora of different rounding algorithms that we might use.
These include round-toward-nearest (which itself encompasses round-half-up and
round-half-down), round-up, round-down, round-toward-zero, round-away-from-zero ,
round-ceiling, round-fl oor, truncation (chopping) … and the list goes on.

APPENDIX HAPPENDIX H

 Rounding Algorithms 101

 1 The term algorithm, which is named after the legendary Persian astrologer, astronomer,
mathematician, scientist, and author Al-Khawarizmi [circa 800–840], refers to a detailed
sequence of actions that are used to accomplish or perform a specifi c task.

APPENDIX H436

 Just to increase the fun and frivolity, some of these terms can sometimes refer to
the same thing, while at other times they may differ (this can depend on whom
you are talking to, the particular computer program or hardware implementation
you are using, and so forth). Furthermore, the effect of a particular algorithm may
vary depending on the form of number representation to which it is being applied,
such as unsigned values, sign-magnitude values, and signed (complement) values .

 In order to introduce the fundamental concepts, we’ll initially assume that we
are working with standard (sign-magnitude) decimal values, such as �3.142 and
�3.142. (For the purposes of these discussions, any number without an explicit
sign is assumed to be positive.) Also, we’ll assume that we wish to round to integer
values, which means that �3.142 will round to �3 (at least, it will if we are using
the round-toward-nearest algorithm as discussed below). Once we have the basics
out of the way, we’ll consider some of the implications associated with applying
rounding to different numerical representations, such as signed binary numbers. 2

 Round-Toward-Nearest
 As its name suggests, this algorithm rounds towards the nearest signifi cant
value (this would be the nearest whole number, or integer, in the case of these
particular examples).

 In many ways, round-toward-nearest is the most intuitive of the various rounding
algorithms. In this case, values such as 5.1, 5.2, 5.3, and 5.4 would round down
to 5, while values of 5.6, 5.7, 5.8, and 5.9 would round up to 6 (Figure H.1).

Before rounding

After rounding

Visualize positive numbers as increasing in size from left-to-right toward positive infinity

�5

�5.1

�5

�5.2

�5

�5.3

�5

�5.4

�5

�5.5

?

�5.6

�6

�5.7

�6

�5.8

�6

�5.9

�6 �6

�5.0 �6.0

FIGURE H.1
 Round-toward-nearest.

 2 Unsigned and signed binary numbers were introduced in Chapter 8: Binary Arithmetic .

 But what should we do in the case of a “half-way ” value such as 5.5? Well, there
are two obvious options: we could round it up to 6 or we could round it down
to 5; these schemes, which are introduced below, are known as round-half-up
and round-half-down , respectively.

 APPENDIX H 437

 ROUND-HALF-UP (ARITHMETIC ROUNDING)

 The round-half-up incarnation of the round-toward-nearest algorithm, which may
also be referred to as arithmetic rounding, is the one that we typically associate
with the concept of rounding that we learned at school. In this case, a “ half-
way ” value such as 5.5 will round up to 6 (Figure H.2).

�5

�5.1

�5

�5.2

�5

�5.3

�5

�5.4

�5

�5.5

�6

�5.6

�6

�5.7

�6

�5.8

�6

�5.9

�6 �6

�5.0 �6.0

FIGURE H.2
 Round-half-up (positive values).

�5.0

�5

�5.1

�5

�5.4

�5

�5.5

�6

�5.6

�6

�5.9

�6

�6.0

�6

�6.1

�6

�6.4

�6

�6.5

�7

�6.6

�7

�6.9

�7

�7.0

�7
FIGURE H.3
 Round-half-up (odd and
even positive values).

 One way to view this is that (at this level of precision and for this particular
example) we can consider there to be ten values that commence with a 5 in the
most-signifi cant place (5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9). On
this basis, it intuitively makes sense for fi ve of the values to round down and for
the other fi ve to round up; that is, for the fi ve values 5.0 through 5.4 to round
down to 5, and for the remaining fi ve values 5.5 through 5.9 to round up to 6.

 Before we move on, it’s worth taking a few moments to note that “ half-way ”
values will always round up when using this algorithm, irrespective of whether
the fi nal result is odd or even (Figure H.3).

 As we see from the above example, the 5.5 value rounds up to 6, which is an
even number; and the 6.5 value rounds up to 7, which is an odd number. The
reason we are emphasizing this point is that the round-half-even and round-half-
odd algorithms—which are introduced a little later—would treat these two val-
ues differently. (The only reason we’ve omitted the values 5.2, 5.3, 5.7, 5.8, 6.2,
6.3, 6.7, and 6.8 from the above illustration is to save space so that we can dis-
play both odd and even values.)

 The tricky point with the round-half-up algorithm arrives when we come to
consider negative numbers. There is no problem in the case of the values like
�5.1, �5.2, �5.3, and �5.4, because these will all round to the nearest inte-
ger, which is �5. Similarly, there is no problem in the case of values like �5.6,
�5.7, �5.8, and �5.9, because these will all round to �6. The problem arises

APPENDIX H438

in the case of “half-way ” values like �5.5 and �6.5 and our defi nition as to
what “up” means in the context of “round-half-up.” Based on the fact that posi-
tive values like �5.5 and �6.5 round up to �6 and �7, respectively, most of us
would intuitively expect their negative equivalents of �5.5 and �6.5 to round
to �6 and �7, respectively. In this case, we would say that our algorithm was
symmetric (with respect to zero) for positive and negative values (Figure H.4).

�7

�6.9

�7

�6.6

�7

�6.5

�6

�6.4

�6

�6.1

�6

�6.0

�6

�5.9

�6

�5.6

�6

�5.5

�5

�5.4

�5

�5.1

�5

�5.0

�5

�7.0

FIGURE H.5
 Round-half-up (odd
and even negative
values—asymmetric
implementation).

�7

�6.9

�7

�6.6

�7

�6.5

�7

�6.4

�6

�6.1

�6

�6.0

�6

�5.9

�6

�5.6

�6

�5.5

�6

�5.4

�5

�5.1

�5

�5.0

�5

Visualize negative numbers as “increasing” in size from right-to-left toward negative infinity

�7.0

FIGURE H.4
 Round-half-up (odd
and even negative
values—symmetric
implementation).

 Observe that the above illustration refers to negative numbers as “increasing”
in size toward negative infi nity. In this case, we are talking about the absolute
size of the values. [By “absolute, ” we mean the size of the number if we disre-
gard it’s sign and consider it to be a positive quantity; for example, �1 is bigger
than �2 in real-world terms, but the absolute value of �2 (which is written as
| � 2|) is � 2, which is bigger than � 1].

 But we digress. The point is that some applications (and some mathemati-
cians) would regard “up” as referring to positive infi nity. Based on this, � 5.5
and �6.5 would actually round to �5 and �6, respectively, in which case we
would class this as being an asymmetric (with respect to zero) implementation
of the round-half-up algorithm (Figure H.5).

 The problem is that different applications treat things differently. For example,
the round method of the Java Math Library provides an asymmetric implemen-
tation of the round-half-up algorithm, while the round function in the math-
ematical modeling, simulation, and visualization tool MATLAB® from The
MathWorks (http://www.mathworks.com/) provides a symmetric implemen-
tation. And, just for giggles and grins, the round function in Visual Basic for
Applications 6.0 actually implements the round-half-even (Banker’s rounding)
algorithm, which is presented later in this appendix.

 APPENDIX H 439

 As a point of interest, the symmetric versions of rounding algorithms are some-
times referred to as Gaussian implementations. This is because the theoretical
frequency distribution known as a “Gaussian Distribution ”—which is named
for the German mathematician and astronomer Karl Friedrich Gauss (1777–
1855)—is symmetrical about its mean value.

 ROUND-HALF-DOWN
 Perhaps not surprisingly, this incarnation of the round-toward-nearest algorithm
acts in the opposite manner to its round-half-up counterpart, as discussed in the
previous topic. In this case, “ half-way ” values such as 5.5 and 6.5 will round
down to 5 and 6, respectively (Figure H.6).

�5

�5.1

�5

�5.4

�5

�5.5

�5

�5.6

�6

�5.9

�6

�6.0

�6

�6.1

�6

�6.4

�6

�6.5

�6

�6.6

�7

�6.9

�7

�7.0

�7

�5.0 FIGURE H.6
 Round-half-down
(odd and even positive
values).

�7

�6.9

�7

�6.6

�7

�6.5

�6

�6.4

�6

�6.1

�6

�6.0

�6

�5.9

�6

�5.6

�6

�5.5

�5

�5.4

�5

�5.1

�5

�5.0

�5

�7.0

FIGURE H.7
 Round-half-down (odd
and even negative
values—symmetric
implementation).

 Once again, we run into a problem when we come to consider negative numbers,
because what we do with “ half-way ” values depends on what we understand
the term “ down ” to mean. On the basis that positive values of �5.5 and � 6.5
round to �5 and �6, respectively, a symmetric implementation of the round-
half-down algorithm will round values of �5.5 and �6.5 to �5 and � 6,
respectively (Figure H.7).

 By comparison, in the case of an asymmetric implementation of the algorithm,
in which “ down ” is understood to refer to negative infi nity, values of �5.5 and
� 6.5 will actually be rounded to � 6 and � 7, respectively (Figure H.8).

�7

�6.9

�7

�6.6

�7

�6.5

�7

�6.4

�6

�6.1

�6

�6.0

�6

�5.9

�6

�5.6

�6

�5.5

�6

�5.4

�5

�5.1

�5

�5.0

�5

�7.0

FIGURE H.8
 Round-half-down (odd
and even negative
values—asymmetric
implementation).

 ROUND-HALF-EVEN (BANKER’S ROUNDING)
 If “ half-way ” values are always rounded in the same direction (for example,
if �5.5 rounds up to �6 and �6.5 rounds up to �7, as is the case with the

APPENDIX H440

round-half-up algorithm presented earlier), the result can be a bias that grows
as more and more rounding operations are performed. One solution toward
minimizing this bias is to sometimes round up and sometimes round down.

 In the case of the round-half-even algorithm (which is often referred to as
 “ Bankers Rounding ” because it is commonly used in fi nancial calculations),
half-way values are rounded toward the nearest even number. Thus, �5.5 will
round up to � 6 and � 6.5 will round down to � 6 (Figure H.9).

�5

�5.1

�5

�5.4

�5

�5.5

�6

�5.6

�6

�5.9

�6

�6.0

�6

�6.1

�6

�6.4

�6

�6.5

�6

�6.6

�7

�6.9

�7

�7.0

�7

�5.0FIGURE H.9
 Round-half-even (odd
and even positive
values).

�7

�6.9

�7

�6.6

�7

�6.5

�6

�6.4

�6

�6.1

�6

�6.0

�6

�5.9

�6

�5.6

�6

�5.5

�6

�5.4

�5

�5.1

�5

�5.0

�5

�7.0FIGURE H.10
 Round-half-even (odd
and even negative
values).

�5

�5.1

�5

�5.4

�5

�5.5

�5

�5.6

�6

�5.9

�6

�6.0

�6

�6.1

�6

�6.4

�6

�6.5

�7

�6.6

�7

�6.9

�7

�7.0

�7

�5.0FIGURE H.11
 Round-half-odd (odd
and even positive
values).

�7

�6.9

�7

�6.6

�7

�6.5

�7

�6.4

�6

�6.1

�6

�6.0

�6

�5.9

�6

�5.6

�6

�5.5

�5

�5.4

�5

�5.1

�5

�5.0

�5

�7.0FIGURE H.12
 Round-half-odd (odd
and even negative
values).

 The round-half-even algorithm is, by defi nition, symmetric for positive and negative
values, so both �5.5 and �6.5 will round to the nearest even value, which is
� 6 (Figure H.10).

 ROUND-HALF-ODD
 This is the theoretical counterpart to the round-half-even algorithm; but in this
case, “half-way ” values are rounded toward the nearest odd number. For exam-
ple, � 5.5 and � 6.5 will round to � 5 and � 7, respectively (Figure H.11).

 As for its “even ” counterpart, the round-half-odd algorithm is, by defi nition,
symmetric for positive and negative values. Thus, �5.5 will round to �5 and
� 6.5 will round to � 7 (Figure H.12).

 APPENDIX H 441

 The reason we used the “ theoretical ” qualifi er at the beginning of this topic is that, in
practice, the round-half-odd algorithm is rarely (if ever) used because it will never round
to zero, and rounding to zero is often a desirable attribute for rounding algorithms.

 ROUND-CEILING (TOWARD POSITIVE INFINITY)
 This refers to always rounding towards positive infi nity. In the case of a positive
number, the result will remain unchanged if the digits to be discarded are all
zero; otherwise it will be rounded up. For example, �5.0 will be rounded to
�5, but �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, �5.7, �5.8, and �5.9 will all
be rounded up to �6. (Similarly, �6.0 will be rounded to �6, while � 6.1
through � 6.9 will all be rounded up to � 7; Figure H.13 .)

�5

�5.1

�6

�5.2

�6

�5.3

�6

�5.4

�6

�5.5

�6

�5.6

�6

�5.7

�6

�5.8

�6

�5.9

�6 �6

Negative infinity Positive infinity

�5.0 �6.0

FIGURE H.13
 Round-ceiling (positive values).

�6

�5.9

�5

�5.8

�5

�5.7

�5

�5.6

�5

�5.5

�5

�5.4

�5

�5.3

�5

�5.2

�5

�5.1

�5 �5

Negative infinity Positive infinity

�6.0 �5.0

FIGURE H.14
 Round-ceiling (negative values).

 By comparison, in the case of a negative number, the unwanted digits are sim-
ply discarded. For example, �5.0, �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, � 5.7,
� 5.8, and � 5.9 will all be rounded to � 5 (Figure H.14).

 From the above illustrations, it’s easy to see that the round-ceiling algorithm
results in a cumulative positive bias. Thus, in the case of software implemen-
tations, or during analysis of a system using software simulation, this form of
rounding is sometimes employed to determine the upper limit of the algo-
rithm (that is, the upper limit of the results generated by the algorithm for a
given data set) for use in diagnostic functions.

 In the case of hardware (a physical realization in logic gates), this algorithm
requires a signifi cant amount of additional logic, and it is therefore rarely used
in hardware implementations.

APPENDIX H442

 ROUND-FLOOR (TOWARD NEGATIVE INFINITY)
 This is the counterpart to the round-ceiling algorithm; the difference being that
in this case we round toward negative infi nity. This means that, in the case of
a negative value, the result will remain unchanged if the digits to be discarded
are all zero; otherwise it will be rounded toward negative infi nity. For example,
�5.0 will be rounded to �5, but �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, � 5.7,
�5.8, and �5.9 will all be rounded to �6 (similarly, �6.0 will be rounded
to � 6, while � 6.1 through � 6.9 will all be rounded to � 7; Figure H.15).

�6

�5.9

�6

�5.8

�6

�5.7

�6

�5.6

�6

�5.5

�6

�5.4

�6

�5.3

�6

�5.2

�6

�5.1

�6 �5

Negative infinity Positive infinity

�6.0 �5.0

FIGURE H.15
 Round-fl oor (negative values).

�5

�5.1

�5

�5.2

�5

�5.3

�5

�5.4

�5

�5.5

�5

�5.6

�5

�5.7

�5

�5.8

�5

�5.9

�5 �6

Negative infinity Positive infinity

�5.0 �6.0

FIGURE H.16
 Round-fl oor (positive values).

 By comparison, in the case of a positive value, the unwanted digits are simply
discarded. For example, �5.0, �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, � 5.7,
� 5.8, and � 5.9 will all be rounded to � 5 (Figure H.16).

 From the above illustrations, it’s easy to see that the round-fl oor algorithm
results in a cumulative negative bias. Thus, as for its round-ceiling counterpart,
in the case of software implementations, or during analysis of a system using
software simulation, the round-fl oor technique is sometimes employed to deter-
mine the lower limit of the algorithm (that is, the lower limit of the results
generated by the algorithm for a given data set) for use in diagnostic functions.

 Furthermore, this approach is “cheap” in terms of hardware (a physical realiza-
tion in logic gates) when working with signed binary numbers since it involves
only a simple truncation (the reason why this should be so is discussed later in
this Appendix); this technique is therefore very often used with regard to hard-
ware implementations.

 APPENDIX H 443

 ROUND-TOWARD-ZERO
 As its name suggests, this refers to rounding in such a way that the result heads
toward zero. For example, �5.0, �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, � 5.7,
�5.8, and �5.9 will all be rounded to �5 (this works the same for odd and
even values, so � 6.0 through � 6.9 will all be rounded to � 6; Figure H.17).

�5

�5.1

�5

�5.2

�5

�5.3

�5

�5.4

�5

�5.5

�5

�5.6

�5

�5.7

�5

�5.8

�5

�5.9

�5 �6

Zero

�5.0 �6.0

FIGURE H.17
 Round-toward-zero (positive values).

�6

�5.9

�5

�5.8

�5

�5.7

�5

�5.6

�5

�5.5

�5

�5.4

�5

�5.3

�5

�5.2

�5

�5.1

�5 �5

Zero

�6.0 �5.0

FIGURE H.18
 Round-toward-zero (negative values).

 Similarly, �5.0, �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, �5.7, �5.8, and � 5.9
will all be rounded to �5 (again, this works the same for odd and even values,
so � 6.0 through � 6.9 will all be rounded to � 6; Figure H.18).

 Another way to think about this form of rounding is that it acts in the same
way as the round-fl oor algorithm for positive numbers and as the round-ceiling
algorithm for negative numbers.

 ROUND-AWAY-FROM-ZERO
 This is the counterpart to the round-toward-zero algorithm; in this case, of course,
we round away from zero. For example, �5.1, �5.2, �5.3, �5.4, �5.5, �5.6,
�5.7, �5.8, and �5.9 will all be rounded to �6 (this works the same for odd
and even values, so �6.1 through �6.9 will all be rounded to �7; Figure H.19).

�5

�5.1

�6

�5.2

�6

�5.3

�6

�5.4

�6

�5.5

�6

�5.6

�6

�5.7

�6

�5.8

�6

�5.9

�6 �6

Zero

�5.0 �6.0

FIGURE H.19
 Round-away-from-zero (positive values).

APPENDIX H444

 Similarly, �5.0, �5.1, �5.2, �5.3, �5.4, �5.5, �5.6, �5.7, �5.8, and � 5.9
will all be rounded to �6 (again, this works the same way for odd and even
values, so � 6.1 through � 6.9 will all be rounded to � 7; Figure H.20).

�6

�5.9

�6

�5.8

�6

�5.7

�6

�5.6

�6

�5.5

�6

�5.4

�6

�5.3

�6

�5.2

�6

�5.1

�6 �5

Zero

�6.0 �5.0

FIGURE H.20
 Round-away-from-zero (negative values).

 Another way to think about this form of rounding is that it acts in the same
way as the round-ceiling algorithm for positive numbers and as the round-fl oor
algorithm for negative numbers.

 ROUND-UP
 The actions of this rounding mode depend on what one means by “up.” Some
applications understand “up” to refer to heading towards positive infi nity; in this
case, round-up is synonymous for round-ceiling. Alternatively, some applications
regard “up” as referring to an absolute value heading away from zero; in this
case, round-up acts in the same manner as the round-away-from-zero algorithm.

 ROUND-DOWN
 This is the counterpart to the round-up algorithm. The actions of this mode
depend on what one means by “down. ” Some applications understand “down ”
to refer to heading towards negative infi nity; in this case, round-down is synon-
ymous for round-fl oor. Alternatively, some applications regard “down ” as refer-
ring to an absolute value heading toward zero; in this case, round-down acts in
the same manner as the round-toward-zero algorithm.

 TRUNCATION (CHOPPING)
 Also known as chopping, truncation simply means discarding any unwanted digits.
This means that in the case of the standard (sign-magnitude) decimal values we’ve
been considering thus far—and also when working with unsigned binary values —
the actions of truncation are identical to those of the round-toward-zero mode.

 But things are never simple: when working with signed binary values, the actions
of truncation refl ect those of the round-fl oor mode (see also the discussions on
Rounding Sign-Magnitude Binary Numbers and Rounding Signed Binary Numbers
later in this appendix).

 APPENDIX H 445

 ROUND-ALTERNATE
 Also known as alternate rounding, this is similar in concept to the round-half-
even and round-half-odd schemes discussed earlier, in that the purpose of this
algorithm is to minimize the bias that can be caused by always rounding “ half-
way ” values in the same direction.

 The problem with the round-half-even scheme, for example, is that it is possible
for a bias to occur if the data being processed contained a disproportionate
number of odd and even “ half-way ” values. One solution is to use the round-
alternate approach, in which the fi rst “ half-way ” value is rounded up (for exam-
ple), the next is rounded down, the next up, the next down, and so on.

 ROUND-RANDOM (STOCHASTIC ROUNDING)
 This may also be referred to as random rounding or stochastic rounding, where
the term “ stochastic ” comes from the Greek stokhazesthai, meaning “to guess
at. ” In this case, when the algorithm is presented with a “ half-way ” value, it
effectively tosses a metaphorical coin in the air and randomly (or pseudo-
randomly) rounds the value up or down.

 Although this technique typically gives the best overall results over large
numbers of calculations, it is only employed in very specialized applications,
because the nature of this algorithm makes it diffi cult to implement and tricky
to verify the results.

 ROUNDING SIGN-MAGNITUDE BINARY VALUES
 Until this point, all of the discussions in this appendix have been based on the
concept of standard sign-magnitude decimal values. Now let’s consider what
happens to our rounding algorithms in the case of binary representations. For
the purposes of these discussions, we will focus on the truncation and round-half-
up algorithms, because these are the techniques commonly used in hardware
implementations constructed out of physical logic gates (in turn, this is because
these algorithms entail relatively little overhead in terms of additional logic).

 We’ll start by considering an 8-bit binary sign-magnitude fi xed-point representa-
tion comprising a sign bit, three integer bits, and four fractional bits (Figure H.21).

 Remember that the differences between unsigned, sign-magnitude, and signed
binary numbers were introduced in Chapter 8: Binary Arithmetic. For our
purposes here, we need only note that—in the case of a sign-magnitude
representation—the sign bit is used only to represent the sign of the value

APPENDIX H446

(0 � positive, 1 � negative). In the case of this particular example, we have
three integer bits that can be used to represent an integer in the range 0 to 7.
Thus, the combination of the sign bit and the three integer bits allows us to

represent positive and negative integers in the
range � 7 through � 7 (Figure H.22).

 As we know [at least, we know if we’ve read
Chapter 8 (hint, hint)], one of the problems with
this format is that we end up with both positive
and negative versions of zero, but that need not
concern us here.

 When we come to the fractional portion of our 8-
bit fi eld, the fi rst fractional bit is used to represent
1/2 � 0.5; the second fractional bit is used to rep-
resent 0.5/2 � 0.25; the third fractional bit is used
to represent 0.25/2 � 0.125, and the fourth frac-
tional bit is used to represent 0.125/2 � 0.0625.
Thus, our 4-bit fi eld allows us to represent frac-
tional values in the range 0.0 through 0.9375 as
shown in Figure H.23 (of course, more fractional
bits would allow us to represent more precise frac-
tional values, but four bits will serve the purposes
of our discussions here).

�0

�1

�2

�3

�4

�5

�6

�7

�0

�1

�2

�3

�4

�5

�6

�7

Implied binary point

Integer bits

BinaryDecimal

Sign bit

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

0

1

0

0

1

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

11 1 1

11 1

1

0

FIGURE H.22
 The sign bit and the
three integer bits of our
1.3.4 sign-magnitude
representation.

8-bit field

Integer
part

Fractional
part

Implied
binary point

�22 � �4

�21 � �2

�20 � �1

Sign bit (0 � �, 1 � �) �2�4 � �0.0625

�2�3 � �0.125

�2�2 � �0.25

�2�1 � �0.5

Sign bit

FIGURE H.21
 8-bit sign-magnitude binary 1.3.4 fi xed-point representation.

 APPENDIX H 447

 Truncation
 So, now let’s suppose that we have a binary value of 0101.0100, which equates
to �5.25 in decimal. If we simply truncate this by removing the fractional fi eld,
we end up with an integer value of 0101 in binary, or �5 in decimal, which is
what we would expect. Similarly, if we started with a value of 1101.0100, which
equates to �5.25 in decimal, then truncating the fractional part leaves us with
an integer value of 1101 in binary, or �5 in decimal, which—again—is what we
expect. Let’s try this with some other values, as illustrated in Figure H.24 .

 The end result is that, as we previously noted, in the case of sign-magnitude
binary numbers, using truncation (simply discarding the fractional bits) is the
same as performing the round-toward-zero algorithm as discussed earlier in this
appendix. Also, as we see, this works exactly the same way for both positive and
negative (and odd and even) values. (Compare these results to those obtained
when performing this operation on signed binary values as discussed in the
next topic.)

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Binary Decimal

�0.0625

�0.0000

�0.1250

�0.1875

�0.2500

�0.3125

�0.3750

�0.4375

�0.5000

�0.5625

�0.6250

�0.6875

�0.7500

�0.8125

�0.8750

�0.9375

Implied
binary point

Fractional Part

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.00

0.00

0.00

0.00

0.25

0.25

0.25

0.25

0.00

0.00

0.00

0.00

0.25

0.25

0.25

0.25

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.000

0.000

0.125

0.125

0.000

0.000

0.125

0.125

0.000

0.000

0.125

0.125

0.000

0.000

0.125

0.125

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

FIGURE H.23
The four fractional bits of our 1.3.4 sign-magnitude representation.

APPENDIX H448

 Round-Half-Up
 As opposed to truncation, the other common rounding algorithm used in hard-
ware implementations is that of round-half-up. The reason this is so popular (as
compared to a round-half-even approach, for example) is that it doesn’t require
us to perform any form of comparison; all we have to do is to add 0.5 to our orig-
inal value and then truncate the result. For example, let’s suppose that we have
a binary value of 0101.1100, which equates to �5.75 in decimal. If we now add
0000.1000 (which equates to 0.5 in decimal) we end up with 0110.0100, which
equates to �6.25 in decimal. And if we then truncate this value, we end up with
0110, or �6 in decimal, which is exactly what we would expect from a round-half-
up algorithm. Let’s try this with some other values as illustrated in Figure H.25 .

 Thus, the end result is that, in the case of sign-magnitude binary numbers, adding
a value of 0.5 and truncating the product gives exactly the same results as perform-
ing a symmetrical version of the round-half-up algorithm, as discussed earlier in this
appendix. And, as we would expect from the symmetrical version of this algorithm,
this works exactly the same way for both positive and negative (and odd and even)
values. (Once again, compare these results to those obtained when performing this
operation on signed binary values as discussed in the next topic.)

Initial
binary value

0 1 0 1 �5.00�. 0 0 0 0 0 1 0 1 � �5

0 1 0 1 �5.25�. 0 1 0 0 0 1 0 1 � �5

0 1 0 1 �5.50�. 1 0 0 0 0 1 0 1 � �5

0 1 0 1 �5.75�. 1 1 0 0 0 1 0 1 � �5

0 1 1 0 �6.00�. 0 0 0 0 0 1 1 0 � �6

0 1 1 0 �6.25�. 0 1 0 0 0 1 1 0 � �6

0 1 1 0 �6.50�. 1 0 0 0 0 1 1 0 � �6

0 1 1 0 �6.75�. 1 1 0 0 0 1 1 0 � �6

1 1 0 1 �5.00�. 0 0 0 0 1 1 0 1 � �5

1 1 0 1 �5.25�. 0 1 0 0 1 1 0 1 � �5

1 1 0 1 �5.50�. 1 0 0 0 1 1 0 1 � �5

1 1 0 1 �5.75�. 1 1 0 0 1 1 0 1 � �5

1 1 1 0 �6.00�. 0 0 0 0 1 1 1 0 � �6

1 1 1 0 �6.25�. 0 1 0 0 1 1 1 0 � �6

1 1 1 0 �6.50�. 1 0 0 0 1 1 1 0 � �6

1 1 1 0 �6.75�. 1 1 0 0 1 1 1 0 � �6

Truncate

P
o

si
ti

ve
 v

al
u

es
N

eg
at

iv
e

va
lu

es

FIGURE H.24
Applying truncation to
sign-magnitude binary
numbers.

 APPENDIX H 449

 ROUNDING SIGNED BINARY VALUES
 For this portion of our discussions, we will base our examples on an 8-bit signed
binary fi xed-point representation comprising four integer bits (the most-signifi cant
of which also acts as a sign bit) and four fractional bits (Figure H.26).

Initial
binary value

Add 0000.1000
(0.5 in decimal)

0 1 0 1 �5.00�. 0 0 0 0 0 1 0 1 � �50 1 0 1 �5.50�. 1 0 0 0

0 1 0 1 �5.25�. 0 1 0 0 0 1 0 1 � �50 1 0 1 �5.75�. 1 1 0 0

0 1 0 1 �5.50�. 1 0 0 0 0 1 1 0 � �60 1 1 0 �6.00�. 0 0 0 0

0 1 0 1 �5.75�. 1 1 0 0 0 1 1 0 � �60 1 1 0 �6.25�. 0 1 0 0

0 1 1 0 �6.00�. 0 0 0 0 0 1 1 0 � �60 1 1 0 �6.50�. 1 0 0 0

0 1 1 0 �6.25�. 0 1 0 0 0 1 1 0 � �60 1 1 0 �6.75�. 1 1 0 0

0 1 1 0 �6.50�. 1 0 0 0 0 1 1 1 � �70 1 1 1 �7.00�. 0 0 0 0

0 1 1 0 �6.75�. 1 1 0 0 0 1 1 1 � �70 1 1 1 �7.25�. 0 1 0 0

1 1 0 1 �5.00�. 0 0 0 0 1 1 0 1 � �51 1 0 1 �5.50�. 1 0 0 0

1 1 0 1 �5.25�. 0 1 0 0 1 1 0 1 � �51 1 0 1 �5.75�. 1 1 0 0

1 1 0 1 �5.50�. 1 0 0 0 1 1 0 1 � �61 1 1 0 �6.00�. 0 0 0 0

1 1 0 1 �5.75�. 1 1 0 0 1 1 0 1 � �61 1 1 0 �6.25�. 0 1 0 0

1 1 1 0 �6.00�. 0 0 0 0 1 1 1 0 � �61 1 1 0 �6.50�. 1 0 0 0

1 1 1 0 �6.25�. 0 1 0 0 1 1 1 0 � �61 1 1 0 �6.75�. 1 1 0 0

1 1 1 0 �6.50�. 1 0 0 0 1 1 1 0 � �71 1 1 1 �7.00�. 0 0 0 0

1 1 1 0 �6.75�. 1 1 0 0 1 1 1 0 � �71 1 1 1 �7.25�. 0 1 0 0

Truncate

FIGURE H.25
Applying round-half-
up to sign-magnitude
binary numbers.

8-bit field

Integer
part

Fractional
part

Implied
binary point

�22 � �4

�21 � �2

�20 � �1

(Sign bit) �23 � �8 �2�4 � �0.0625

�2�3 � �0.125

�2�2 � �0.25

�2�1 � �0.5

FIGURE H.26
 8-bit signed binary 4.4 fi xed-point representation.

APPENDIX H450

 Once again, the differences between
unsigned, sign-magnitude, and signed binary
numbers were introduced in Chapter 8:
Binary Arithmetic. For our purposes here, we
need only note that—in the case of a signed
binary representation—the sign bit is used
to signify a negative quantity (not just the
sign), while the remaining bits continue to
represent positive values. Thus, in the case
of our 4-bit integer fi eld, a 1 in the sign bit
refl ects a value of �23 � �8, which there-
fore allows us to use this 4-bit fi eld to rep-
resent integers in the range �8 through � 7
(Figure H.27).

 The fractional portion of our 8-bit fi eld
behaves in exactly the same manner as for
the sign-magnitude representations we dis-
cussed in the previous section; the fi rst frac-
tional bit is used to represent 1/2 � 0.5;

the second fractional bit is used to represent 0.5/2 � 0.25; the third fractional
bit is used to represent 0.25/2 � 0.125; and the fourth fractional bit is used
to represent 0.125/2 � 0.0625. Thus, our four-bit fi eld allows us to represent
fractional values in the range 0.0 through 0.9375 as shown below (once again,
more fractional bits would allow us to represent more precise fractional values,
but four bits will serve the purposes of our discussions) (Figure H.28).

 Truncation
 So, now let’s suppose that we have a signed binary value of 0101.1000, which
equates to �5.5 in decimal. If we simply truncate this by removing the frac-
tional fi eld, we end up with an integer value of 0101 in binary, or �5 in deci-
mal, which is what we would expect.

 However, now consider what happens if we wish to perform the same opera-
tion on the equivalent negative value of �5.5. In this case, our binary value
will be 1010.1000, which equates to � 8 � 2 � 0.5 � �5.5 in decimal. Thus,
truncating the fractional part leaves us with an integer value of 1010 in binary,
or �6 (as opposed to the �5 we received in the case of the sign-magnitude
representations in the previous section). Let’s try this with some other values,
as illustrated in Figure H.29 .

�0

�1

�2

�3

�4

�5

�6

�7

�8 � 0 � �8

�8 � 1 � �7

�8 � 2 � �6

�8 � 3 � �5

�8 � 4 � �4

�8 � 5 � �3

�8 � 6 � �2

�8 � 7 � �1

Implied binary point

Integer bits

BinaryDecimal

Sign bit

0

0

0

0

0

0

0

00 0

0

1

1

1

1

1

1

0

0

0

0

0

1

1

0

1

0

0

1

1

0

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

11 1 1

11 1

1

0

FIGURE H.27
 The sign bit and the
three integer bits of
our 4.4 signed binary
representation.

 APPENDIX H 451

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Binary Decimal

�0.0625

�0.0000

�0.1250

�0.1875

�0.2500

�0.3125

�0.3750

�0.4375

�0.5000

�0.5625

�0.6250

�0.6875

�0.7500

�0.8125

�0.8750

�0.9375

Implied
binary point

Fractional part

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.00

0.00

0.00

0.00

0.25

0.25

0.25

0.25

0.00

0.00

0.00

0.00

0.25

0.25

0.25

0.25

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.000

0.000

0.125

0.125

0.000

0.000

0.125

0.125

0.000

0.000

0.125

0.125

0.000

0.000

0.125

0.125

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

0.0000

0.0625

FIGURE H.28
 The four fractional bits
of our 4.4 signed binary
representation.

Initial
binary value

P
o

si
ti

ve
 v

al
u

es

0 1 0 1 �. 0 0 0 0 0 1 0 1 � �5�5.00

0 1 0 1 �. 0 1 0 0 0 1 0 1 � �5�5.25

0 1 0 1 �. 1 0 0 0 0 1 0 1 � �5�5.50

0 1 0 1 �. 1 1 0 0 0 1 0 1 � �5�5.75

0 1 1 0 �. 0 0 0 0 0 1 1 0 � �6�6.00

0 1 1 0 �. 0 1 0 0 0 1 1 0 � �6�6.25

0 1 1 0 �. 1 0 0 0 0 1 1 0 � �6�6.50

0 1 1 0 �. 1 1 0 0 0 1 1 0 � �6�6.75

1 0 1 1 �8 � 3 � 0.00�. 0 0 0 0 1 0 1 1 � �5�5.00�

1 0 1 0 �8 � 2 � 0.75�. 1 1 0 0 1 0 1 0 � �6�5.25�

1 0 1 0 �8 � 2 � 0.50�. 1 0 0 0 1 0 1 0 � �6�5.50�

1 0 1 0 �8 � 2 � 0.25�. 0 1 0 0 1 0 1 0 � �6�5.75�

1 0 1 0 �8 � 2 � 0.00�. 0 0 0 0 1 0 1 0 � �6�6.00�

1 0 0 1 �8 � 1 � 0.75�. 1 1 0 0 1 0 0 1 � �7�6.25�

1 0 0 1 �8 � 1 � 0.50�. 1 0 0 0 1 0 0 1 � �7�6.50�

1 0 0 1 �8 � 1 � 0.25�. 0 1 0 0 1 0 0 1 � �7�6.75�

Truncate

N
eg

at
iv

e
va

lu
es

FIGURE H.29
 Applying truncation to
signed binary numbers.

APPENDIX H452

 Observe the values shown in red/bold and compare these values to those obtained
when performing this operation on sign-magnitude binary values as discussed in the
previous topic. The end result is that, as we previously noted, in the case of signed
binary numbers, using truncation (simply discarding the fractional bits) is the same
as performing the round-fl oor algorithm as discussed earlier in this appendix.

 Round-Half-Up
 As we previously noted, the other common rounding algorithm used in hard-
ware implementations is that of round-half-up. Once again, the reason this algo-
rithm is so popular (as compared to a round-half-even approach, for example) is
that it doesn’t require us to perform any form of comparison; all we have to do
is to add 0.5 to our original value and then truncate the result.

 As you will recall, in the case of positive values, we expect this algorithm to
round to the next integer for fractional values of 0.5 and higher. For example,
�5.5 should round to �6. Let’s see if this works. If we have an initial value of
0101.1000 (which equates to �5.5 in decimal) and we add 0000.1000 (which
equates to 0.5 in decimal) we end up with 0110.0000, which equates to � 6.0
in decimal. And if we now truncate this value, we end up with 0110 or �6 in
decimal, which is what we would expect.

 But what about negative values? If we have an initial value of 1010.1000 (which
equates to � 8 � 2 � 0.5 � �5.5 in decimal) to which we add 0000.1000
(which equates to 0.5 in decimal) we end up with 1011.0000, which equates to
� 8 � 3 � �5 in decimal. If we then truncate this value, we end up with 1011
or �5 in decimal, as opposed to the value of �6 that we might have hoped for.
Just to make the point a little more strongly, let’s try this with some other val-
ues, as illustrated in Figure H.30 .

 As we see, in the case of signed binary numbers, adding a value of 0.5 and trun-
cating the product gives exactly the same results as performing an asymmetrical
version of the round-half-up algorithm as discussed earlier in this appendix. As
we would expect from the asymmetrical version of this algorithm, this works
differently for positive and negative values that fall exactly on the “half-way ”
(0.5) boundary. (Compare these results to those obtained when performing
this operation on signed binary values, as discussed in the previous topic.)

 SUMMARY
 Figure H.31 refl ects a summary of the main rounding modes discussed above,
as applied to standard (sign-magnitude) decimal values .

 APPENDIX H 453

Initial
binary value

Add 0000.1000
(0.5 in decimal)

0 1 0 1 �5.00�. 0 0 0 0 0 1 0 1 � �50 1 0 1 �5.50�. 1 0 0 0

0 1 0 1 �5.25�. 0 1 0 0 0 1 0 1 � �50 1 0 1 �5.75�. 1 1 0 0

0 1 0 1 �5.50�. 1 0 0 0 0 1 1 0 � �60 1 1 0 �6.00�. 0 0 0 0

0 1 0 1 �5.75�. 1 1 0 0 0 1 1 0 � �60 1 1 0 �6.25�. 0 1 0 0

0 1 1 0 �6.00�. 0 0 0 0 0 1 1 0 � �60 1 1 0 �6.50�. 1 0 0 0

0 1 1 0 �6.25�. 0 1 0 0 0 1 1 0 � �60 1 1 0 �6.75�. 1 1 0 0

0 1 1 0 �6.50�. 1 0 0 0 0 1 1 1 � �70 1 1 1 �7.00�. 0 0 0 0

0 1 1 0 �6.75�. 1 1 0 0 0 1 1 1 � �70 1 1 1 �7.25�. 0 1 0 0

1 0 1 1 �5.00�. 0 0 0 0 1 0 1 1 � �51 0 1 1 �4.50�. 1 0 0 0

1 0 1 0 �5.25�. 1 1 0 0 1 0 1 1 � �51 0 1 1 �4.75�. 0 1 0 0

1 0 1 0 �5.50�. 1 0 0 0 1 0 1 1 � �51 0 1 1 �5.00�. 0 0 0 0

1 0 1 0 �5.75�. 0 1 0 0 1 0 1 0 � �61 0 1 0 �5.25�. 1 1 0 0

1 0 1 0 �6.00�. 0 0 0 0 1 0 1 0 � �61 0 1 0 �5.50�. 1 0 0 0

1 0 0 1 �6.25�. 1 1 0 0 1 0 1 0 � �61 0 1 0 �5.75�. 0 1 0 0

1 0 0 1 �6.50�. 1 0 0 0 1 0 1 0 � �61 0 1 0 �6.00�. 0 0 0 0

1 0 0 1 �6.75�. 0 1 0 0 1 0 0 1 � �71 0 0 1 �6.25�. 1 1 0 0

Truncate

FIGURE H.30
 Applying round-half-
up to signed binary
numbers.

�2.0 �1.7 �1.5 �1.3 �1.0 �0.7 �0.5 �0.3 0.0 0.3 0.5 0.7 1.0 1.3 1.5 1.7 2.0

�2 �2 �2 �1 �1 �1 �1 �0 0 0 1 1 1 1 2 2 2

�2 �2 �1 �1 �1 �1 �0 �0 0 0 1 1 1 1 2 2 2

�2 �2 �1 �1 �1 �1 �0 �0 0 0 0 1 1 1 1 2 2

�2 �2 �2 �1 �1 �1 �1 �0 0 0 0 1 1 1 1 2 2

R-H-U (s)

R-H-U (a)

R-H-D (s)

R-H-D (a)

ZeroNegative infinity Zero Positive infinity

�2 �2 �2 �1 �1 �1 �0 �0 0 0 0 1 1 1 2 2 2

�2 �2 �1 �1 �1 �1 �1 �0 0 0 1 1 1 1 1 2 2

R-H-E

R-H-O

�2 �1 �1 �1 �1 �0 �0 �0 0 1 1 1 1 2 2 2 2

�2 �2 �2 �2 �1 �1 �1 �1 0 0 0 0 1 1 1 1 2

R-C

R-F

�2 �1 �1 �1 �1 �0 �0 �0 0 0 0 0 1 1 1 1 2

�2 �2 �2 �2 �1 �1 �1 �1 0 1 1 1 1 2 2 2 2

R-T-Z

R-A-F-Z

Mode

R-H-U � Round-Half-Up

R-H-E � Round-Half-Even

R-H-D � Round-Half-Down

R-H-O � Round-Half-Odd

R-C � Round-Ceiling R-F � Round-Floor

R-T-Z � Round-Toward-Zero R-A-F-Z � Round-Away-From-Zero

(s) � Symmetric

(a) � Asymmetric

FIGURE H.31
 Summary of rounding algorithms.

APPENDIX H454

 With regard to the above illustration, it’s important to remember the following
points (all of which are covered in more detail in our earlier discussions):

 ■ The generic concept of round-toward-nearest encompasses both the round-
half-up and round-half-down modes.

 ■ The term arithmetic rounding is another name for the round-half-up algo-
rithm (of which there can be both symmetric and asymmetric versions).

 ■ Depending on the application/implementation, the actions of the round-
up algorithm may either equate to those of the round-ceiling mode or to
those of the round-away-from-zero modes.

 ■ Depending on the application/implementation, the actions of the round-
down algorithm may either equate to those of the round-fl oor mode or to
those of the round-toward-zero mode.

 ■ In the case of sign-magnitude or unsigned binary numbers, the actions of
truncation are identical to those of the round-toward-zero mode. By com-
parison, in the case of signed binary numbers, the actions of truncation
are identical to those of the round-fl oor mode.

 ■ Finally, this entire appendix was spawned from just a single topic in a
book I coauthored called How Computers Do Math (ISBN: 0471732788).
If you’ve found these discussions to be useful and interesting, just imag-
ine how much fun you’d have reading the book!

455

 INVERTING THREE SIGNALS USING ONLY
TWO NOT GATES
 As we discussed in Chapter 9: Boolean Algebra, if you are new to Boolean alge-
bra, you may well feel that it’s horribly complicated. On this basis, you may
be surprised to hear that engineers actually enjoy posing (and solving) logical
problems. For example, here’s an interesting conundrum that should get the old
brain cells “fi ring on all six cylinders. ” Consider a “black box ” with three inputs
(A, B, C) and three outputs (notA, notB, notC) as illustrated in Figure I.1 .

 The notA output is the logical negation of the A input (if A is 0, then notA will
be 1; if A is 1, then notA will be 0). Similarly, the notB and notC outputs are the
logical negations of the B and C inputs, respectively.

 So, our task is to implement the contents of the black box. Now, this task would
be trivial if we could use any primitive logic gates we so-desired. For example, we
could simply use three NOT gates as illustrated in Figure I.2 .

APPENDIX IAPPENDIX I

 An Interesting Conundrum

? notB

notC

notA

“Black Box”

B

C

A

FIGURE I.1
 A block box with three inputs and three outputs.

notB

notC

notA

B

C

A

NOT

NOT

NOT

FIGURE I.2
 The simplest solution is to use three NOT gates.

APPENDIX I456

 Alternatively, and for no other reason than to show that there are usually lots
of different ways of realizing things in logic, we could implement the contents
of our black box using three XOR gates, as illustrated in Figure I.3 .

notB

notC

B

C

XOR

XOR

XOR

notA
A

I

I

I

Logic 1

FIGURE I.3
 An alternative solution using three XOR gates.

 But here’s the problem; for the purposes of this conundrum, although we are
allowed to use as many AND and OR gates as we wish, we can use only two
NOT gates, and we can’t use any NAND, NOR, XOR, or XNOR gates.

 As fate would have it, I once posed this problem in a blog. One of my friends
soon sent me an e-mail saying: “ I don’t think it can be done. ” This was followed
a little later by a message saying: “ I stand corrected, I have the glimpse of an idea
as to how it might be done. ” And, the following morning (after a sleepless night
on his part), a triumphant e-mail arrived saying: “ It can be done, and this is how
you do it! ” My friend’s solution was as follows:

 Inputs:
 A, B, C;

 Outputs:
 notA, notB, notC;

 Internal Nodes:
 2Or3Ones � ((A & B)|(A & C)|(B & C));
 0Or1Ones � !(2Or3Ones);
 1One � 0Or1Ones & (A|B|C);
 1Or3Ones � 1One|(A & B & C);
 0Or2Ones � !(1Or3Ones);
 0Ones � 0Or2Ones & 0Or1Ones;
 2Ones � 0Or2Ones & 2Or3Ones;

 APPENDIX I 457

 Equations for Outputs:
 notA � 0Ones|(1One & (B|C))|(2Ones & (B & C));
 notB � 0Ones|(1One & (A|C))|(2Ones & (A & C));
 notC � 0Ones|(1One & (A|B))|(2Ones & (A & B));

 Remember that we’re using “! ” to represent a NOT gate, “ & ” to represent an
AND gate, and “ | ” to represent an OR gate.

 You have to admit that this is really jolly clever. What my friend did was to cre-
ate a suite of internal signals that tell him whether he has zero 1s, one 1, two
1s, three 1s, and so forth (as we see, this solution uses only AND, OR, and two
NOT gates). We can then combine these signals with the input values to gener-
ate the output equations. I LOVE this solution.

This page intentionally left blank

459

 DOWNHILL MUD-WRESTLING
 Well, my little avocado pears, festooned with slivers of spring onions and deluged
with lashings of spicy Italian dressing … here we are at the end of the book
(sob sob).

 Having absorbed the myriad juicy snippets of information that are strewn so
lavishly throughout Bebop to the Boolean Boogie, you are now uniquely qualifi ed
to regale an assembled throng with a discourse on almost any subject under
the sun. So, this would be the perfect time to rest our weary brains and turn
our attention to other facets of life’s rich tapestry. For example, as soon as I’ve
fi nished penning these last few words, I must return to practicing my downhill
mud-wrestling skills as, I have no doubt, so do you.

APPENDIX JAPPENDIX J

 A No-Holds Barred Seafood
Gumbo

 Beware! If you are under 21, male, or a politician, don’t attempt to do anything on the

culinary front without your mother’s permission and supervision, because kitchens contain

sharp things, hot things, and a wide variety of other potentially dangerous things.

 But fi rst we need to recline, relax, lay back, unwind, and take the time to
recharge our batteries—and what could be more appropriate than a steaming
bowl of no-holds-barred seafood gumbo? So, here’s the recipe for a fulsomely
fl avored Epicurean taste-fest sensation suffi cient to cause the most sophisti-
cated of gastronomes to start salivating surreptitiously and to make a grown
man break down and cry.

 This pert little beauty will pulsate promiscuously across your pallet and pummel
it with a passion; titillate your taste buds and have them tap-dancing the tango
on your tongue; reverberate and resonate resoundingly throughout your nervous

APPENDIX J460

system, and warm the cockles of your heart. In short, this frisky little number
will grab you by the short-and-curlies, swing you sybaritically around the room
in a syncopated symphony of delight, and leave you groveling on your knees,
gnashing your teeth, and gasping for more.

 INGREDIENTS
 The following ingredients are for the main body of the gumbo—you’ll have to
sort out any rice, bread, and side dishes for yourself (this isn’t a cheap dish, by
the way, but it’s well worth the expense for the acclaim 1 you will win from your
family and friends):

 2 cups of diced onions
 1½ cups of diced green bell peppers
 1 cup of diced celery
 2 cups of halved button mushrooms
 3 large cloves of fi nely diced garlic
 1 fi nely diced scotch bonnet or habañero pepper
 10 thick-cut slices of bacon
 1 pound of Cajun-style sausage
 1 pound of uncooked, peeled, medium-sized shrimp
 ½ pound of scallops
 ¾ pound white fi sh cut into slices
 1 small tin of anchovies
 2 bay leaves
 ½ teaspoon dried thyme leaves
 ¼ teaspoon dried oregano
 ½ teaspoons of salt
 1½ teaspoons of white pepper
 ½ teaspoon of black pepper
 ½ teaspoon of cayenne pepper
 2 teaspoons of Gumbo Filé
 5½ cups of chicken stock
 Lots of butter (more below)
 ¾ cup fl our

 If you can’t get Cajun-style sausage, then Polish sausage will do nicely. Note that
the teaspoon quantities in the list of ingredients do not refer to level measures,

 1 I once won a chili cook-off competition with this recipe; it was so good they changed the
rules to let me win; I kid you not!

 APPENDIX J 461

nor should you to attempt to set a new world record for the amount you can
balance on one spoon—just try to aim for roughly the same sensuously rounded
profi le you get when you’re casually spooning sugar into a cup of coffee.
So, without further ado, let’s gird up our loins and proceed to the fray …

 STEP-BY-STEP INSTRUCTIONS
 1. First of all there’s an art to cooking, and it starts by doing the washing

up you’ve been putting off all day, and putting all of the pots away.
 2. Grill (broil) the bacon until it’s crispy and crunchy; then put it on a

plate to cool and set it to one side.
 3. Prepare all of the vegetables, mushrooms, garlic, and scotch bonnet or

habañero pepper. (Be careful with the latter—it’s best to wear gloves
here—because these are ferociously hot and if you get the juice on your
fi nger and then touch anywhere near your eyes you’re going to be a very
unhappy camper.) Put them all in separate bowls, except for the scotch
bonnet and garlic, which can go together.

 4. Chop the Cajun-style sausage into ¼-inch pieces (cut at about a
45-degree angle because this looks nicer); put them in a bowl and set it to
one side.

 5. Mix the salt, thyme, oregano, Gumbo Filé, and the white, black, and cay-
enne peppers together in a cup and set it to one side (you’ll need your
hands free later).

 6. Wash up all the knives, chopping boards, and everything else you’ve
used and put them all away, and then wipe down all of your working
surfaces. Trust me—you’ll feel better when everything is clean and tidy.
(Have I ever lied to you before?) Take a fi ve-minute break and (assum-
ing you are of legal age) quaff 2 a glass of wine—after all, who deserves it
more than you?

 7. Put the chicken stock into a large saucepan and bring it to a boil. Then
reduce the heat to a low, slow simmer and leave it on the back burner.

 8. Using a medium- to medium-high heat, melt ¾ of a cup of butter in a
large, heavy skillet until it starts to bubble. Gradually add the fl our using
a whisk and stir constantly until the resulting roux is a darkish, reddish
brown (the darker the better—try to be brave here and leave it longer
than you expect). Remove the skillet from the heat, but keep on stirring
until it’s cooled down enough so that the mixture won’t stick and burn.

 2 Quaffi ng is just like regular drinking, except that you do it with gusto and abandon and
you tend to spill more down your chest.

APPENDIX J462

 9. Maintain the stock at a low simmer and add the mixture that you’ve just
made, stirring it in one spoonful at a time and waiting for each spoonful
to dissolve before adding the next.

 10. Clean the skillet, put it on a medium-high to high heat, and melt a
chunk of butter. Stirring all the time, sauté the celery for one minute,
add the bell peppers and sauté for 1½ minutes, add the onions and
sauté for 1½ minutes, then add the scotch bonnets and garlic along
with the mixture of herbs, salt, and pepper, and sauté for one more
minute. Finally, chuck the whole lot into the saucepan with the stock.

 11. Break the bacon into ½-inch pieces and toss them into the stock.
Flake the anchovies with a fork and cast them into the stock. Hurl in
the Cajun-style sausage and the bay leaves. Also, if you happen to have
any lying around, add a couple of teaspoons of English Worcestershire
sauce. Cover the saucepan and leave on a low simmer.

 12. After about half an hour, return the skillet to a medium-high to high heat
and melt another chunk of butter. Sauté the mushrooms until they’re
golden brown and squealing for more, then use them to swell the con-
tents of the saucepan.

 13. Simmer the whole mixture (stirring often) for at least another half
hour, which, by some strange quirk of fate, will give you all the time
you need to wash the skillet and the dishes you used and put them
away again. If you’re ravenous, you can proceed immediately to the
next step; if you’re wise, however, you’ll remove the heat, let the con-
tents cool, put the saucepan in the fridge, and leave your cunningly
captivating creation to stand overnight (chilies, stews, curries, and
gumbos always taste better if the ingredients have the time to formally
introduce themselves). The next day, when you’re ready to chow down,
return the saucepan to the stove, bring the contents to a low simmer,
and proceed to the next step.

 14. Chop the scallops and fi sh into bite-sized chunks. Shortly before you’re
ready to eat, add the shrimp, scallops, and fi sh to the stock, bring every-
thing to a boil, and then return it to a simmer. Maintain the simmer
until the seafood is cooked (I personally opt for around 10 minutes)
and you’re ready to rock and roll.

 SERVING YOUR GORGEOUS GOURMET GUMBO
 This little beauty will put hairs on your chest, make them curl, and then take
them off again. Seriously, this gumbo really is seductively, scintillatingly, and

 APPENDIX J 463

(with the addition of the habañero pepper) scorchingly tasty—your guests will
be singing your praises and tap-dancing in the streets.

 You can serve your gorgeous gourmet gumbo over steamed or boiled rice, with
crusty French bread, or with whatever else your heart desires. The quantities
given above will serve eight to ten manly-man sized portions with a little some-
thing left over for the following day.

 Of course, no meal would be complete without some wine—and the perfect
complement to your scrumptious repast is … to be found in a very large bottle.
Enjoy!

This page intentionally left blank

465

 μ C
 See Microcontroller.

 μ P
 See Microprocessor.

 Absolute Scale of Temperature
 A scale of temperature that was invented by the British mathematician and
physicist William Thomas, fi rst Baron of Kelvin. Under the absolute, or Kelvin ,
scale of temperature, 0K (corresponding to � 273	C) is the coldest possible
temperature and is known as Absolute Zero.

 Absolute Zero
 See Absolute Scale of Temperature.

 Active-High
 Beware, here be dragons. In this book an active-high signal is defi ned as a signal
whose active state is considered to be a logic 1. This defi nition, which is used by
the engineers in the trenches, allows all forms of logic, including assertion-level
logic, to be represented without any confusion, regardless of whether positive- or
negative-logic implementations are employed.

Unfortunately, some academics (and even textbooks) defi ne an active-high sig-
nal as being one whose asserted (TRUE or logic 1) state is at a higher voltage
level than its unasserted (FALSE or logic 0) state. However, this defi nition serves
only to cause confusion when combined with negative-logic implementations.
Thus, when using the term active-high in discussions with other people, you
are strongly advised to make sure that you’re all talking about the same thing
before you start.

 Glossary Glossary

Glossary466

 Active-Low
 In this book an active-low signal is defi ned as a signal whose active state is con-
sidered to be a logic 0. This defi nition, which is used by the engineers in the
trenches, allows all forms of logic, including assertion-level logic, to be represented
without any confusion, regardless of whether positive- or negative-logic implemen-
tations are employed.

Unfortunately, some academics (and even textbooks) defi ne an active-low
signal as being one whose asserted (TRUE or logic 1) state is at a lower volt-
age level than its unasserted (FALSE or logic 0) state. However, this defi nition
serves only to cause confusion when combined with negative-logic implemen-
tations. Thus, when using the term active-low in discussions with other people,
you are strongly advised to make sure that you’re all talking about the same
thing before you start.

 Active Substrate
 A hybrid or System-in-Package (SiP) substrate formed from a semiconductor.
Termed active because components such as transistors can be fabricated directly
into the substrate.

 Active Trimming
 The process of trimming components such as resistors while the circuit is under
power. Such components are fabricated directly onto the substrate of a hybrid
or System-in-Package (SiP), and the trimming is usually performed using a laser
beam.

 Actuator
 A transducer that converts an electronic signal into a physical equivalent. For
example, a loudspeaker is an actuator that converts electronic signals into cor-
responding sounds.

 A/D (Analog-to-Digital)
 The process of converting an analog value into its digital equivalent.

 Additive Process
 A process in which conducting material is added to specifi c areas of a substrate.
Groups of tracks, individual tracks, or portions of tracks can be built up to pre-
cise thicknesses by iterating the process multiple times with selective masking.

 Address Bus
 A unidirectional set of signals used by a computer to point to memory locations
in which it is interested.

 Glossary 467

 Analog
 A continuous value that most closely resembles the real world and can be as
precise as the measuring technique allows.

 Analog Circuit
 A collection of components used to process or generate analog signals.

 Analog-to-Digital
 See A/D.

 Analogue
 The way they spell “analog ” in England.

 Anisotropic Adhesives
 Special adhesives that contain minute particles of conductive material. These
adhesives fi nd particular application with the fl ipped-chip techniques used to
mount bare die on the substrates of hybrids, System-in-Package (SiP) assem-
blies, or circuit boards. The conducting particles are only brought in contact
with each other at the sites where the raised pads on the die are pressed down
over their corresponding pads on the substrate, thereby forming good electrical
connections between the pads.

 Anti-Fuse Technology
 A programmable logic device technology in which conducting paths (anti-fuses)
are “ grown ” by applying signals of relatively high voltage and current to the
device’s inputs.

 Anti-Pad
 The area of copper etched away around a via or a plated through-hole on a
power or ground plane, thereby preventing an electrical connection being
made to that plane.

 Application-Specifi c Integrated Circuit
 See ASIC.

 Application-Specifi c Standard Part
 See ASSP.

 ASIC (Application-Specifi c Integrated Circuit)
 A device whose function is determined by a designer for a particular application
or group of applications.

Glossary468

 ASIC Cell
 A logic function in the ceil library defi ned by the manufacturer of an application-
specifi c integrated circuit.

 Assertion-Level Logic
 A technique used to draw symbols that more precisely represent the function
of logic gates with active-low inputs.

 Associative Rules
 Algebraic rules that state that the order in which pairs of variables are associ-
ated together will not affect the result of an operation; for example, 1 (a & b) &
c � a & (b & c).

 ASSP (Application-Specifi c Standard Part)
 Refers to complex integrated circuits created by a device manufacturer using
ASIC technologies, where these components are to be sold as standard parts to
anybody who wants to buy them.

 Asynchronous
 A signal whose data is acknowledged or acted upon immediately, regardless of
any clock signal.

 Atto
 Unit qualifi er (symbol � a) representing one-millionth of one-millionth of
one-millionth, or 10 � 18 . For example, “3 as ” stands for 3 � 10 � 18 seconds.

 Backplane
 The medium used to interconnect a number of circuit boards. Typically refers
to a special, heavy-duty printed circuit board.

 Ball Grid Array
 See BGA.

 Bare Die
 An unpackaged integrated circuit.

 Barrier Layer
 See Overglassing.

 Base
 Refers to the number of digits in a numbering system. For example, the decimal
numbering system is said to be base-10. (May also be referred to as the “radix.”)

 1 Note that the symbol � indicates “is equivalent to ” or “is the same as. ”

 Glossary 469

 Basic Cell
 A predefi ned group of unconnected components that is replicated across the
surface of a gate array form of ASIC.

 BDD (Binary Decision Diagram)
 A method of representing Boolean equations as decision trees.

 Bebop
 A form of music characterized by fast tempos and agitated rhythms that
became highly popular in the decade following World War II.

 BEDO (Burst EDO)
 An asynchronous form of DRAM-based computer memory that was popular for
a while in the latter half of the 1990s. Along with other asynchronous memory
techniques, BEDO was eventually superseded by SDRAM technologies. See also
FPM, EDO, and SDRAM.

 BGA (Ball Grid Array)
 A packaging technology similar to a Pad Grid Array (PGA), in which a device’s
external connections are arranged as an array of conducting pads on the base of
the package. However, in the case of a ball grid array, small balls of solder are
attached to the conducting pads.

 BiCMOS (Bipolar-CMOS)
 A technology in which the function of each logic gate is implemented using low-
power CMOS, while the output stage is implemented using high-drive bipolar
transistors.

 Binary
 Base-2 numbering system (the type of numbers that computers use internally).

 Binary Decision Diagram
 See BDD.

 Binary Digit
 A numeral in the binary scale of notation. A binary digit (typically abbreviated
to “ bit ”) can adopt one of two values: 0 or 1.

 Binary Encoding
 A form of state assignment for state machines that requires the minimum num-
ber of state variables.

Glossary470

 Binary Logic
 Digital logic gates based on two distinct voltage levels. The two voltages are used
to represent the binary values 0 and 1, and their logical equivalents FALSE and
TRUE.

 BiNMOS (Bipolar NMOS)
 A relatively new low-voltage integrated circuit technology in which complex
combinations of bipolar and NMOS transistors are used for sophisticated out-
put stages providing both high speed and low static power dissipation.

 Bipolar Junction Transistor
 See BJT.

 Bi-quinary
 A system that utilizes two bases, base-2 and base-5, to represent decimal num-
bers. Each decimal digit is represented by the sum of two parts, one of which
has the value of decimal zero or fi ve, and the other the values of zero through
four. The abacus is one practical example of the use of a bi-quinary system.

 BIST (Built-in Self-test)
 A test strategy in which additional logic is built into a component, thereby
allowing it to test itself.

 Bit
 Abbreviation of binary digit. A binary digit can adopt one of two values: 0 or 1.

 BJTs (Bipolar Junction Transistors)
 A family of transistors.

 Blind Via
 A via that is only visible from one side of the substrate.

 Bobble
 A small circle used on the inputs to a logic gate symbol to indicate an active
low input or control, or on the outputs to indicate a negation (inversion) or
complementary signal. Some engineers prefer to use the term “bubble. ”

 Boolean Algebra
 A mathematical way of representing logical expressions.

 Bootstrapping
 A sequence of initialization operations performed by a computer when it is
fi rst powered up.

 Glossary 471

 Braze
 To unite or fuse two pieces of metal by heating them in conjunction with a
hard solder with a high melting point.

 Buckyballs
 Prior to the mid-1980s, the only major forms of pure carbon known to us
were graphite and diamond. In 1985, however, a third form consisting of
spheres formed from 60 carbon atoms (C 60) was discovered. Offi cially known as
Buckministerfullerine2—named after the American architect R. Buckminister Fuller
who designed geodesic domes with the same fundamental symmetry—these
spheres are more commonly known as “ buckyballs. ” In 2000, scientists with the
U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley
Lab) and the University of California at Berkeley reported that they had managed
to fashion a transistor from a single buckyball.

 Built-in Self-Test
 See BIST.

 Bulk Storage
 Refers to some form of media, typically magnetic, such as tape or a disk drive,
which can be used to store large quantities of information relatively inexpensively.

 Buried Via
 A via used to link conducting layers internal to a substrate. Such a via is not vis-
ible from either side of the substrate.

 Burst EDO
 See BEDO.

 Bus
 A set of signals performing a common function and carrying similar data.
Typically represented using vector notation; for example, data[7:0].

 Bundle
 A set of signals related in some way that makes it appropriate to group them
together for ease of representation or manipulation. May contain both scalar
and vector elements; for example, { a,b,c,d [5:0] } .

 Byte
 A group of eight binary digits, or bits.

 2 Science magazine voted Buckministerfullerine the “ Molecule of the Year ” in 1991.

Glossary472

 Cache Memory
 A small, high-speed, memory (usually SRAM) used to buffer the central pro-
cessing unit from any slower, lower cost memory devices such as DRAM. The
high-speed cache memory is used to store active instructions and data, 3 while
the bulk of the instructions and data reside in the slower memory.

 Canonical Form
 In a mathematical context this term is taken to mean a generic or basic represen-
tation. Canonical forms provide the means to compare two expressions without
falling into the trap of trying to compare “apples” with “oranges. ”

 Capacitance
 A measure of the ability of two adjacent conductors separated by an insulator to
hold a charge when a voltage differential is applied between them. Capacitance
is measured in units of Farads.

 Carbon Nanotube FET
 See CNFET.

 Catalyst
 A substance that initiates a chemical reaction under different conditions (such as
lower temperatures) than would otherwise be possible. The catalyst itself remains
unchanged at the end of the reaction.

 Cell
 See ASIC Cell, Basic Cell, Cell Library, and Memory Cell.

 Cell Library
 The collective name for the set of logic functions defi ned by the manufacturer
of an application-specifi c integrated circuit. The designer decides which types
of cells should be realized and connected together to make the device perform
its desired function.

 Central Processing Unit
 See CPU.

 Ceramic
 An inorganic, nonmetallic material, such as alumina, beryllia, steatite, or fors-
terite, which is fi red at a high temperature and is often used in electronics as a
substrate or to create component packages.

 3In this context, “active ” refers to data or instructions that a program is currently using, or
which the operating system believes that the program will want to use in the immediate
future.

 Glossary 473

 CGA (Column Grid Array)
 A packaging technology similar to a Pad Grid Array (PGA), in which a device’s
external connections are arranged as an array of conducting pads on the base
of the package. However, in the case of a column grid array, small columns of
solder are attached to the conducting pads.

 CGH (Computer-Generated Hologram)
 In the context of this book, this refers to a slice of quartz or similar mate-
rial into which three-dimensional patterns are cut using a laser. The angles
of the patterns cut into the quartz are precisely calculated for use in the opti-
cal communication strategy known as holographic interconnect. All of these
calculations are performed by a computer, and the laser used to cut the three-
dimensional patterns into the quartz is also controlled by a computer. Thus,
the slice of quartz is referred to as a computer-generated hologram.

 Channel
 (1) The area between two arrays of basic cells in a channeled gate array. (2) The
gap between the source and drain regions in a MOS transistor.

 Channeled Gate Array
 An Application-Specifi c Integrated Circuit (ASIC) organized as arrays of basic cells.
The areas between the arrays are known as channels.

 Channel-Less Gate Array
 An Application-Specifi c Integrated Circuit (ASIC) organized as a single large array
of basic cells. May also be referred to as a “sea of cells ” or a “sea of gates ”
device.

 Checksum
 The fi nal cyclic-redundancy check value stored in a linear feedback shift register
(or software equivalent). Also known as a “ signature ” in the guided-probe vari-
ant of a functional test.

 Chemically Amplifi ed Resist
 In the case of a chemically amplifi ed resist, the application of a relatively small
quantity of ultraviolet light stimulates the formation of chemicals in the resist,
where these chemicals accelerate the degrading process. This reduces the amount
of ultraviolet light required to degrade the resist and allows the creation of fi ner
features with improved accuracy.

 Chemical Mechanical Polishing
 See CMP.

Glossary474

 Chemical Vapor Deposition
 See CVD.

 Chemical Vapor Infi ltration
 See CVI.

 Chip
 Popular name for an integrated circuit.

 Chip-on-Board
 See COB.

 Chip-on-Chip
 See COC.

 Chip-on-Flex
 See COF.

 Chip Scale Package
 See CSP.

 Circuit Board
 The generic name for a wide variety of interconnection techniques, which
include rigid, fl exible, and rigid-fl ex boards in single-sided, double-sided, and
multilayer confi gurations.

 CMOS (Complementary Metal Oxide Semiconductor)
 Logic gates constructed using both NMOS and PMOS transistors connected in
a complementary manner.

 CMP (Chemical Mechanical Polishing)
 A process used to re-planarize a wafer—smoothing the surface by polishing out
the “bumps” caused by adding a metallization (tracking) layer.

 CNFET (Carbon Nanotube FET)
 A type of transistor announced by IBM in the summer of 2002. This device is
based on a fi eld-effect transistor featuring a carbon nanotube measuring 1.4
nanometers in diameter as the channel (the rest of the transistor is formed
using conventional silicon and metal processing technologies). It will be a
number of years before these devices become commercially available, but they
are anticipated to signifi cantly outperform their silicon-only counterparts.

 Glossary 475

 Coaxial Cable
 A conductor in the form of a central wire surrounded fi rst by a dielectric (insu-
lating) layer, and then by a conducting tube that serves to shield the central
wire from external interference.

 COB (Chip-on-Board)
 A process in which unpackaged integrated circuits are physically and electri-
cally attached to a circuit board, and are then encapsulated with a “ glob ” of
protective material such as epoxy.

 COC (Chip-on-Chip)
 A process in which unpackaged integrated circuits are mounted on top of each
other. Each die is very thin and it is possible to have over a hundred die form-
ing a 3-D cube.

 Coeffi cient of Thermal Expansion
 Defi nes the amount that a material expands and contracts due to changes in
temperature. If materials with different coeffi cients of thermal expansion are
bonded together, changes in temperature will cause shear forces at the interface
between them.

 COF (Chip-on-Flex)
 Similar to Chip-on-Board, except that the unpackaged integrated circuits are
attached to a fl exible printed circuit.

 Cofi red Ceramic
 A substrate formed from multiple layers of “ green ” ceramic that are bonded
together and fi red at the same time.

 Column Grid Array
 See CGA.

 Combinational
 A digital function whose output value is directly related to the current combi-
nation of values on its inputs.

 Combinatorial
 See Combinational.

 Commutative Rules
 Algebraic rules that state that the order in which variables are specifi ed will not
affect the result of an operation: for example, 4 a & b � b & a.

 4 Note that the symbol � indicates “ is equivalent to ” or “ is the same as. ”

Glossary476

 Comparator (digital)
 A logic function that compares two binary values and outputs the results in
terms of binary signals representing less-than and/or equal-to and/or greater than.

 Compiled Cell Technology
 A technique used to create portions of a standard cell Application-Specifi c
Integrated Circuit (ASIC). The masks used to create components and interconnec-
tions are directly generated from Boolean representations using a program called
a silicon compiler. May also be used to create data-path and memory functions.

 Complementary Output
 Refers to a function with two outputs carrying complementary logical values. One
output is referred to as the true output and the other as the complementary output.

 Complementary Rules
 Rules in Boolean Algebra derived from the combination of a single variable
with the inverse of itself.

 Complex Programmable Logic Device
 See CPLD.

 Computer-Generated Hologram
 See CGH.

 Computer Virus
 There are many different types of computer viruses but, for the purposes of this
book, a computer virus may be defi ned as a self-replicating program released into
a computer system for a number of purposes. These purposes range from the
simply mischievous, such as displaying humorous or annoying messages, to
the downright nefarious, such as corrupting data or destroying (or subverting)
the operating system.

 Conditioning
 See Signal Conditioning.

 Conductive Ink Technology
 A technique in which tracks are screen-printed directly onto the surface of a cir-
cuit board using conductive ink.

 Conjunction
 Propositions combined with an AND operator: for example, “You have a parrot
on your head AND you have a fi sh in your ear. ” The result of a conjunction is true
if all the propositions comprising that conjunction are true.

 Glossary 477

 CPLD (Complex PLD)
 A device that contains a number of PLA or PAL functions sharing a common
programmable interconnection matrix.

 CPU (Central Processing Unit)
 The “ brain ” of a computer, where all of the decision making and number crunch-
ing is performed.

 CRC (Cyclic Redundancy Check)
 A calculation used to detect errors in data communications, typically per-
formed using a linear feedback shift register. Similar calculations may be used
for a variety of other purposes such as data compression.

 CSIC (Customer-Specifi c Integrated Circuit)
 An alternative and possibly more accurate name for an ASIC, but this term is rarely
used in the industry and shows little indication of fi nding favor with the masses.

 CSP (Chip Scale Package)
 An integrated circuit packaging technique in which the package is only frac-
tionally larger than the silicon die.

 CSSP (Customer-Specifi c Standard Product)
 A silicon chip that combines traditional FPGA programmable fabric with collec-
tions of hard macros; these macros include functions that can interface to differ-
ent types of external memory devices, provide various communications functions,
the ability to drive display devices, and so forth.

 Cure
 To harden a material using heat, ultraviolet light, or some other process.

 Cured
 Refers to a material that has been hardened using heat, ultraviolet light or some
other process.

 Customer-Specifi c Integrated Circuit
 See CSIC.

 Customer-Specifi c Standard Product
 See CSSP.

 CVD (Chemical Vapor Deposition)
 A process for growing thin fi lms on a substrate, in which a gas containing the
required molecules is converted into plasma by heating it to extremely high
temperatures using microwaves. The plasma carries atoms to the surface of

Glossary478

the substrate where they are attracted to the crystalline structure of the sub-
strate. This underlying structure acts as a template. The new atoms continue to
develop the structure to build up a layer on the substrate’s surface.

 CVI (Chemical Vapor Infi ltration)
 A process similar to Chemical Vapor Deposition (CVD) but, in this case, the process
commences by placing a crystalline powder of the required substance in a mold.
Additionally, thin posts, or columns, can be preformed in the mold, and the pow-
der can be deposited around them. When exposed to the same plasma as used in
the CVD technique, the powder coalesces into a polycrystalline mass. After the CVI
process has been performed, the posts can be dissolved, leaving holes through the
crystal for use in creating vias. CVI processes can produce layers twice the thick-
ness of those obtained using CVD techniques at a fraction of the cost.

 Cyclic Redundancy Check
 See CRC.

 D/A (Digital-to-Analog)
 The process of converting a digital value into its analog equivalent.

 Data Bus
 A bidirectional set of signals used by a computer to convey information from a
memory location to the central processing unit and vice versa. More generally,
a set of signals used to convey data between digital functions.

 Data-Path Function
 A well-defi ned function such as an adder, counter, or multiplier used to process
digital data.

 Daughter Board
 If a backplane contains active components such as integrated circuits, then it is
usually referred to as a motherboard. In this case, the boards plugged into it are
referred to as daughter boards.

 DDR (Double Data Rate)
 A modern form of SDRAM-based memory. The original SDRAM specifi cation
was based on using one of the clock edges only (say the rising edge) to read/write
data out-of/into the memory. DDR refers to memory designed in such a way that
data can be read/written on both edges of the clock. This effectively doubles the
amount of data that can be pushed through the system without increasing the
clock frequency (like many things this sounds simple if you say it fast, but mak-
ing this work is trickier than it may at fi rst appear). See also QDR and SDRAM.

 Glossary 479

 Decimal
 Base-10 numbering system.

 Decoder (digital)
 A logic function that uses a binary value, or address, to select between a num-
ber of outputs and to assert the selected output by placing it in its active state.

 Deep Sub-Micron
 See DSM.

 Delamination
 Occurs when a composite material formed from a number of layers is stressed,
thermally or otherwise, such that the layers begin to separate.

 DeMorgan Transformation
 The transformation of a Boolean expression into an alternate, and often more
convenient, form.

 Die
 (1) An unpackaged integrated circuit. In this case, the plural of die is also die (in
much the same way that “a shoal of herring ” is the plural of “ herring ”). (2) A piece
of metal with a design engraved or embossed on it for stamping onto another
material, upon which the design appears in relief.

 Dielectric Layer
 (1) An insulating layer used to separate two signal layers. (2) An insulating
layer used to modify the electrical characteristics of a substrate.

 Die Separation
 The process of separating individual die from the wafer by marking the wafer
with a diamond scribe and fracturing it along the scribed lines.

 Die Stacking
 A technique used in specialist applications in which several bare die are stacked
on top of each other to form a sandwich. The die are connected together and
then packaged as a single entity.

 Diffusion Layer
 The surface layer of a piece of semiconductor into which impurities are dif-
fused to form P-type and N-type material. In addition to forming components,
the diffusion layer may also be used to create embedded traces.

Glossary480

 Digital
 A value represented as being in one of a fi nite number of discrete states called
quanta. The accuracy of a digital value is dependent on the number of quanta
used to represent it.

 Digital Circuit
 A collection of logic gates used to process or generate digital signals.

 Digital Signal Processing/Processor
 See DSP.

 Digital-to-Analog
 See D/A.

 DIMM (Dual Inline Memory Module)
 A single memory integrated circuit can only contain a limited amount of data,
so a number are gathered together onto a small circuit board called a memory
module. Each memory module has a line of gold-plated pads on both sides of
one edge of the board. These pads plug into a corresponding connector on the
main computer board. In the case of a Dual Inline Memory Module (DIMM), the
pads on opposite sides of the board are electrically isolated from each other
and form two separate contacts. See also SIMM and RIMM .

 Diode
 A two-terminal device that conducts electricity in only one direction; in the
other direction it behaves like an open switch. These days the term diode is
almost invariably taken to refer to a semiconductor device, although alterna-
tive implementations such as vacuum tubes are available.

 Diode-Transistor Logic
 See DTL.

 Discrete Device
 Typically taken to refer to an electronic component such as a resistor, capacitor,
diode, or transistor that is presented in an individual package. More rarely, the
term may be used in connection with a simple integrated circuit containing a
small number of primitive gates.

 Disjunction
 Propositions combined with an OR operator; for example, “You have a parrot on
your head OR you have a fi sh in your ear. ” The result of a disjunction is true if at
least one of the propositions comprising that disjunction is true.

 Glossary 481

 Distributive Rules
 Two very important rules in Boolean Algebra. The fi rst states that the AND
operator distributes over the OR operator: for example, 5 a & (b | c) � (a & b) |
(a & c). The second states that the OR operator distributes over the AND opera-
tor: for example, a | (b & c) � (a | b) & (a | c).

 Doping
 The process of inserting selected impurities into a semiconductor to create
P-type or N-type material.

 Double Data Rate
 See DDR.

 Double-Sided
 A printed circuit board with tracks on both sides.

 DRAM (Dynamic RAM)
 A memory device in which each cell is formed from a transistor-capacitor pair.
Called dynamic because the capacitor loses its charge over time, and each cell
must be periodically recharged if it is to retain its data.

 DSM (Deep Submicron)
 Typically taken to refer to integrated circuits containing structures that are
smaller than 0.5 microns (one-half of one-millionth of a meter).

 DSP (Digital Signal Processing)
 Perhaps not surprisingly, the term Digital Signal Processing (DSP) refers to pro-
cessing data (signals) in the digital domain. This processing can be performed
using a general-purpose microprocessor, a special-purpose Digital Signal Processor
(DSP), or in a Field Programmable Gate Array (FPGA). In this latter case, the FPGA
can be confi gured (programmed) to perform multiple operations in parallel,
which allows it to perform the digital signal processing task extremely quickly.

 DSP (Digital Signal Processor)
 A special form of microprocessor that has been designed to perform a specifi c
processing task on a specifi c type of digital data much faster and more effi -
ciently than can be achieved using a general-purpose microprocessor.

 DTL (Diode-Transistor Logic)
 Logic gates implemented using particular confi gurations of diodes and bipolar
junction transistors. For the majority of today’s designers, diode-transistor logic
is of historical interest only.

 5 Note that the symbol � indicates “ is equivalent to ” or “ is the same as. ”

Glossary482

 Dual Inline Memory Module
 See DIMM.

 Duo-decimal
 Base-12 numbering system.

 Dynamic Flex
 A type of fl exible printed circuit which is used in applications that are required to
undergo constant fl exing such as ribbon cables in printers.

 Dynamically Reconfi gurable Hardware
 A product whose function may be customized on-the-fl y while remaining resi-
dent in the system.

 Dynamic RAM
 See DRAM.

 EBE (Electron Beam Epitaxy)
 A technique for creating thin fi lms on substrates in precise patterns. The sub-
strate is fi rst coated with a layer of dopant material before being placed in a
high vacuum. A guided beam of electrons is fi red at the substrate, causing the
dopant to be driven into it, effectively allowing molecular-thin layers to be
 “ painted” onto the substrate where required.

 ECC (Error-Correcting Code)
 Computer systems are very complicated and there’s always the chance that an error
will occur when reading or writing to the memory (a stray pulse of “noise” may
fl ip a logic 0 to a logic 1 while your back is turned). Thus, serious computers use
ECC memory, which includes extra bits and special circuitry that tests the accuracy
of data as it passes in and out of memory and corrects any (simple) errors.

 ECL (Emitter-Coupled Logic)
 Logic gates implemented using particular confi gurations of bipolar junction
transistors.

 Edge-Sensitive
 An input that only affects a function when it transitions from one logic value
to another.

 EDO (Extended Data Out)
 An asynchronous form of DRAM-based computer memory that was popular for
a while in the latter half of the 1990s. Along with other asynchronous memory

 Glossary 483

techniques, EDO was eventually superseded by SDRAM technologies. See also
FPM, BEDO , and SDRAM.

 EEPROM or E 2 PROM (Electrically-Erasable Programmable Read-Only
Memory)
 A memory device whose contents can be electrically programmed by the designer.
Additionally, the contents can be electrically erased, allowing the device to be
reprogrammed.

 Electrically-Erasable Programmable Read-Only Memory
 See EEPROM.

 Electromigration
 (1) A process in which structures on an integrated circuit’s substrate (particu-
larly structures in deep sub-micron technologies) are eroded by the fl ow of
electrons in much the same way as a river erodes land. (2) The process of form-
ing transistor-like regions in a semiconductor using an intense magnetic fi eld.

 Electron Beam Epitaxy
 See EBE.

 Electron Beam Lithography
 An integrated circuit fabrication process in which fi ne beams of electrons are
used to draw extremely high-resolution patterns directly into the resist without
the use of a mask.

 Electrostatic Discharge
 See ESD.

 Emitter-Coupled Logic
 See ECL.

 Enzyme
 One of numerous complex proteins that are produced by living cells and cata-
lyze biochemical reactions at body temperatures.

 EPROM (Erasable Programmable Read-Only Memory)
 A memory device whose contents can be electrically programmed by the
designer. Additionally, the contents can be erased by exposing the die to ultra-
violet light through a quartz window mounted in the top of the component’s
package.

Glossary484

 Equivalent Gate
 A concept in which each type of logic function is assigned an equivalent gate
value for the purposes of comparing functions and devices. However, the defi -
nition of an equivalent gate varies depending on whom you’re talking to.

 Erasable Programmable Read-Only Memory
 See EPROM.

 Error-Correcting Code
 See ECC.

 ESD (Electro-Static Discharge)
 This refers to a charged person, or object, discharging static electricity, which can
be generated in the process of moving around. Although the current associated
with such a static charge is extremely low, the electric potential can be in the mil-
lions of volts and can severely damage electronic components. CMOS devices are
particularly prone to damage from static electricity.

 Etching
 The process of selectively removing any material not protected by a resist using
an appropriate solvent or acid. In some cases the unwanted material is removed
using an electrolytic process.

 Eutectic Bond
 A bond formed when two pieces of metal, or metal-coated materials, are pressed
together and vibrated at ultrasonic frequencies.

 Extended Data Out
 See EDO.

 Falling-Edge
 See Negative-Edge.

 Fan-In Via
 See Fan-Out Via.

 Fan-Out Via
 In the case of surface mount devices, each component pad is usually connected by
a short length of track to a via which forms a link to other conducting layers, and
this via is known as a fan-out via. Some engineers attempt to differentiate vias that
fall inside the device’s footprint (under the body of the device) from vias that fall
outside the device’s footprint by referring to the former as fan-in vias, but this is not
a widely used term.

 Glossary 485

 Fast Page Mode
 See FPM.

 Femto
 Unit qualifi er (symbol � f) representing one-thousandth of one-millionth of
one-millionth, or 10 � 15 . For example, “ 3 fs” stands for 3 � 10 � 15 seconds.

 FET
 A transistor whose control, or gate, signal creates an electromagnetic fi eld,
which turns the transistor ON or OFF.

 Field-Effect Transistor
 See FET.

 Field-Programmable Device
 See FPD.

 Field-Programmable Gate Array
 See FPGA.

 FIFO (First-In First-Out)
 A memory device in which data is read out in the same order that it was written in.

 Finite State Machine
 See FSM.

 Firmware
 Refers to programs, or sequences of instructions, that are hard-coded into non-
volatile memory devices.

 First-In First-Out
 See FIFO.

 Flash
 See Gold Flash.

 FLASH Memory
 An evolutionary technology that combines the best features of the EPROM and
E2PROM technologies. The name FLASH is derived from the technology’s fast
reprogramming time compared to EPROM.

 Flex
 See FPC.

Glossary486

 Flexible Printed Circuit
 See FPC.

 Flipped-Chip
 A generic name for processes in which unpackaged integrated circuits are “fl ipped
over ” and mounted directly onto a substrate with their component sides facing
the substrate.

 Flipped-TAB
 A combination of fl ipped-chip and Tape-Automated Bonding (TAB).

 Footprint
 The area occupied by a device mounted on a substrate .

 FPC (Flexible Printed Circuit)
 A specialist circuit board technology, often abbreviated to “fl ex, ” in which tracks
are printed onto fl exible materials. There are a number of fl avors of fl ex, including
static fl ex, dynamic fl ex., and rigid fl ex.

 FPD (Field Programmable Device)
 A generic name that encompasses SPLDs, CPLDs, and FPGAs.

 FPGA (Field-Programmable Gate Array)
 A programmable logic device that is more versatile than traditional programma-
ble devices such as PALs and PLAs, but less versatile than an Application-Specifi c
Integrated Circuit (ASIC). Some fi eld-programmable gate arrays use anti-fuses
such as those found in programmable logic devices, while others are based on
SRAM equivalents.

 FPM (Fast Page Mode)
 An asynchronous form of DRAM-based computer memory, which was popu-
lar for a while in the latter half of the 1990s. Along with other asynchronous
memory techniques, FPM was eventually superseded by SDRAM technologies.
See also EDO, BEDO, and SDRAM.

 FR4
 The most commonly used insulating base material for circuit boards. FR4 is
made from woven glass fi bers that are bonded together with an epoxy. The
board is cured using a combination of temperature and pressure, which causes
the glass fi bers to melt and bond together, thereby giving the board strength
and rigidity. The fi rst two characters stand for “Flame Retardant ” and you can

 Glossary 487

count the number of people who know what the “ 4 ” stands for on the fi ngers
of one hand. FR4 is technically a form of fi berglass, and some people do refer
to these composites as fi berglass boards or fi berglass substrates, but not often.

 Free-Space Optical Interconnect
 A form of optical interconnect in which laser diode transmitters communicate
directly with photo transistor receivers without employing optical fi bers or
optical waveguides.

 FSM (Finite State Machine)
 The actual implementation (in hardware or software) of a function that can be
considered to consist of a fi nite set of states through which it sequences.

 Full Custom
 An Application-Specifi c Integrated Circuit in which the design engineers have
complete control over every mask layer used to fabricate the device. The ASIC
vendor does not provide a cell library or prefabricate any components on the
substrate.

 Functional Test
 A test strategy in which signals are applied to a circuit’s inputs, and the result-
ing signals—which are observed on the circuit’s outputs—are compared to
known good values.

 Fuse
 See Fusible-Link Technology.

 Fusible Link Technology
 A programmable logic device technology that employs links called fuses.
Individual fuses can be removed by applying pulses of relatively high voltage
and current to the device’s inputs.

 Fuzz-Button
 A small ball of fi brous gold used in one technique for attaching components such
as System-in-Packages (SiPs) to circuit boards. Fuzz-buttons are inserted between
the pads on the base of the package and their corresponding pads on the board.
When the package is forced against the board, the fuzz-buttons compress to
form good electrical connections. One of the main advantages of the fuzz-but-
ton approach is that it allows broken devices to be quickly removed and replaced.
Even though fuzz-button technology would appear to be inherently unreliable, it
is used in such devices as missiles, so one can only assume that it is fairly robust.

Glossary488

 GaAs (Gallium Arsenide)
 A 3:5 valence high-speed semiconductor formed from a mixture of gallium and
arsenic. GaAs transistors can switch approximately eight times faster than their
silicon equivalents. However, GaAs is hard to work with, which results in GaAs
transistors being more expensive than their silicon cousins.

 GAL (Generic Array Logic)
 A variation on a PAL device from a company called Lattice Semiconductor
Corporation.6

 Gallium Arsenide
 See GaAs.

 Garbage-In Garbage-Out
 See GIGO.

 Gate Array
 An Application-Specifi c Integrated Circuit in which the manufacturer prefabri-
cates devices containing arrays of unconnected components (transistors and
resistors) organized in groups called basic cells. The designer specifi es the func-
tion of the device in terms of cells from the cell library and the connections
between them, and the manufacturer then generates the masks used to create
the metallization layers.

 Generic Array Logic
 See GAL.

 Geometry
 Refers to the size of structures created on an integrated circuit. The structures
typically referenced are the width of the tracks and the length of the transis-
tor’s channels; the dimensions of other features are derived as ratios of these
structures.

 Giga
 Unit qualifi er (symbol � G) representing one thousand million, or 10 9. For
example, 3 GHz stands for 3 � 10 9 hertz.

 GIGO (Garbage-In Garbage-Out)
 An electronic engineer’s joke, also familiar to the writers of computer
programs.

 6 GAL is a registered trademark of Lattice Semiconductor Corporation.

 Glossary 489

 Glue Logic
 Simple logic gates used to interface more complex functions.

 Gold Flash
 An extremely thin layer of gold with a thickness measured on the molecular
level, which is either electroplated or chemically plated 7 onto a surface.

 Gray Code
 A sequence of binary values in which each pair of adjacent values differs by
only a single bit: for example: 00 , 01 , 11, 10.

 Green Ceramic
 Unfi red, malleable ceramic.

 Ground Plane
 A conducting layer in, or on, a substrate providing a grounding, or reference,
point for components. There may be several ground planes separated by insu-
lating layers.

 Guard Condition
 A Boolean expression associated with a state transition in a state diagram
or state table. The expression must be satisfi ed for that state transition to be
executed.

 Guided Probe
 A form of functional test in which the operator is guided in the probing of a
circuit to isolate a faulty component or track.

 Guided Wave
 A form of optical interconnect, in which optical waveguides are fabricated
directly on the substrate of a System-in-Package (SiP). These waveguides can be
created using variations on standard opto-lithographic thin-fi lm processes.

 Hard Macro (Macro Cell)
 A logic function defi ned by the manufacturer of an Application-Specifi c Integrated
Circuit (ASIC). The function is described in terms of the simple functions pro-
vided in the cell library and the connections between them. The manufacturer
also defi nes how the cells forming the macro will be assigned to basic cells and
the routing of tracks between the basic cells.

 7 That is, using an electroless plating process.

Glossary490

 Hardware
 Generally understood to refer to any of the physical portions constituting an elec-
tronic system, including components, circuit boards, power supplies, cabinets,
and monitors.

 Hardware Description Language
 See HDL.

 HDL (Hardware Description Language)
 Today’s digital integrated circuits can end up containing millions of logic gates,
and it simply isn’t possible to capture and manage designs of this complexity
at the schematic (circuit diagram) level. Thus, as opposed to using schemat-
ics, the functionality of a high-end integrated circuit is now captured in textual
form using a (HDL). The two most popular HDLs are Verilog and VHDL.

 Hertz
 See HZ.

 Heterojunction
 The interface between two regions of dissimilar semiconductor materials. The
interface of a heterojunction has naturally occurring electric fi elds that can be
used to accelerate electrons, and transistors created using heterojunctions can
switch much faster than their homojunction counterparts of the same size.

 Hexadecimal
 Base-16 numbering system. Each hexadecimal digit can be directly mapped
onto four binary digits, or bits.

 High Impedance State
 The state of a signal that is not currently being driven by anything. A high-
impedance state is indicated by the “Z” character.

 Hologram
 A three-dimensional image (from the Greek holos, meaning “whole” and gram ,
meaning “message”).

 Holography
 The art of creating three-dimensional images known as holograms.

 Homojunction
 An interface between two regions of semiconductor having the same basic
composition but opposing types of doping. Homojunctions dominate current
processes because they are easier to fabricate than their heterojunction cousins.

 Glossary 491

 Hybrid
 An electronic subsystem in which a number of integrated circuits (packaged and/or
unpackaged) and discrete components are attached directly to a common sub-
strate. Connections between the components are formed on the surface of the
substrate, and some components such as resistors and inductors may also be fab-
ricated directly onto the substrate.

 Hydrogen Bond
 The electrons in a water molecule are not distributed equally, because the oxy-
gen atom is a bigger, more robust fellow that grabs more than its fair share. The
end result is that the oxygen atom has an overall negative charge, while the two
hydrogen atoms are left feeling somewhat on the positive side. This unequal dis-
tribution of charge means that the hydrogen atoms are attracted to anything with
a negative bias: for example, the oxygen atom of another water molecule. The
resulting bond is known as a hydrogen bond.

 Hz (hertz)
 Unit of frequency. One hertz equals one cycle—or one oscillation—per second.

 IC (Integrated Circuit)
 A device in which components such as resistors, diodes, and transistors are
formed on the surface of a single piece of semiconductor.

 ICR (In-Circuit Reconfi gurable)
 An SRAM-based or similar component that can be dynamically reprogrammed
on-the-fl y while remaining resident in the system.

 Idempotent Rules
 Rules derived from the combination of a single Boolean variable with itself.

 IDM (Integrated Device Manufacturer)
 A company that focuses on designing, manufacturing, and selling integrated
circuits as opposed to complete electronic systems.

 Impedance
 The resistance to the fl ow of current caused by resistive, capacitive, or inductive
devices (or undesired parasitic elements) in a circuit.

 In-Circuit Reconfi gurable
 See ICR.

 Inclusion
 A defect in a crystalline structure.

Glossary492

 Inductance
 A property of a conductor that allows it to store energy in a magnetic fi eld that is
induced by a current fl owing through it. The base unit of inductance is the henry.

 Inert Gas
 See Noble Gas.

 In-System Programmable
 See ISP.

 Integrated Circuit
 See IC.

 Integrated Device Manufacturer
 See IDM.

 Intellectual Property
 See IP.

 Invar
 An alloy similar to bronze.

 Involution Rule
 A rule that states that an even number of Boolean inversions cancel each other out.

 Ion
 A particle formed when an electron is added to, or subtracted from, a neutral
atom or group of atoms.

 Ion Implantation
 A process in which beams of ions are directed at a semiconductor to alter its
type and conductivity in certain regions.

 IP (Intellectual Property)
 When a team of electronics engineers is tasked with designing a complex inte-
grated circuit, rather than “reinvent the wheel, ” they may decide to purchase
the plans for one or more functional blocks that have already been created by
someone else. The plans for these functional blocks are known as intellectual
property (IP). IP blocks can range all the way up to sophisticated communica-
tions functions and microprocessors. The more complex functions—like micro-
processors—may be referred to as “cores. ”

 ISP (In-System Programmable)
 An E 2-based, FLASH-based, or similar component that can be reprogrammed
while remaining resident on the circuit board.

 Glossary 493

 JEDEC (Joint Electronic Device Engineering Council)
 A council that creates, approves, arbitrates, and oversees industry standards for elec-
tronic devices. In programmable logic, the term JEDEC refers to a textual fi le con-
taining information used to program a device. The fi le format is a JEDEC-approved
standard and is commonly referred to as a JEDEC fi le.

 Jelly Bean Device
 An integrated circuit containing a small number of simple logic functions.

 Joint Electronic Device Engineering Council
 See JEDEC.

 Jumper
 A small piece of wire used to link two tracks on a circuit board.

 Karnaugh Map
 A graphical technique for representing a logical function. Karnaugh maps are
often useful for the purposes of minimization.

 Kelvin Scale of Temperature
 A scale of temperature that was invented by the British mathematician and physi-
cist William Thomas, fi rst Baron of Kelvin. Under the Kelvin, or absolute, scale of
temperature, 0 K (corresponding to �273	C) is the coldest possible temperature
and is known as absolute zero.

 Kilo
 Unit qualifi er (symbol � k) representing one thousand, or 10 3. For example,
3 kHz stands for 3 � 10 3 hertz.

 Kipper
 A fi sh cured by smoking and salting. 8

 Laminate
 A material constructed from thin layers or sheets. Often used in the context of
circuit boards.

 Large-Scale Integration
 See LSI.

 Laser Diode
 A special semiconductor diode that emits a beam of coherent light.

 Last-In First-Out
 See LIFO.

 8 Particularly tasty as a breakfast dish.

Glossary494

 Latch-Up Condition
 A condition in which a circuit draws uncontrolled amounts of current, and cer-
tain voltages are forced, or “latched-up,” to some level. Particularly relevant in
the case of CMOS devices, which can latch-up if their operating conditions are
violated.

 Lateral Thermal Conductivity
 Good lateral thermal conductivity means that the heat generated by compo-
nents mounted on a substrate can be conducted horizontally across the sub-
strate and out through its leads.

 Lead
 (1) A metallic element (chemical symbol Pb). (2) A metal conductor used to
provide a connection from the inside of a device package to the outside world
for soldering or other mounting techniques. Leads are also commonly called
pins.

 Lead Frame
 A metallic frame containing leads (pins) and a base to which an unpackaged
integrated circuit is attached. Following encapsulation, the outer part of the
frame is cut away and the leads are bent into the required shapes.

 Lead Through-Hole
 See LTH.

 Least-Signifi cant Bit
 See LSB.

 Least-Signifi cant Byte
 See LSB.

 LED (Light-Emitting Diode)
 A semiconductor diode that behaves in a similar manner to a normal diode
except that, when turned on, it emits light in the visible or Infrared (IR) regions
of the electromagnetic spectrum.

 Level-Sensitive
 An input whose effect on a function depends only on its current logic value
or level, and is not directly related to it transitioning from one logic value to
another.

 LFSR (Linear Feedback Shift Register)
 A shift register whose data input is generated as an XOR or XNOR of two or
more elements in the register chain.

 Glossary 495

 LIFO (Last-In First-Out)
 A memory device in which data is read out in the reverse order to which it was
written in.

 Light-Emitting Diode
 See LED.

 Line
 Used to refer to the width of a track: for example, “ This circuit board track has a
line-width of 5 mils (fi ve-thousandths of an inch). ”

 Linear Feedback Shift Register
 See LFSR.

 Literal
 A variable (either true or inverted) in a Boolean equation.

 Logic Function
 A mathematical function that performs a digital operation on digital data and
returns a digital value.

 Logic Gate
 The physical implementation of a logic function.

 Logic Synthesis
 A process in which a program is used to automatically convert a high-level tex-
tual representation of a design [specifi ed using a Hardware Description Language
(HDL) at the Register Transfer Level (RTL) of abstraction] into equivalent
Boolean Equations (like the ones introduced in Chapter 9: Boolean Algebra).
The synthesis tool automatically performs simplifi cations and minimizations,
and eventually outputs a gate-level netlist.

 Low-Fired Cofi red
 Similar in principle to standard cofi red ceramic substrate techniques. However,
low-fi red cofi red uses modern ceramic materials with compositions that allow
them to be fi red at temperatures as low as 850	C. Firing at these temperatures
in an inert atmosphere such as nitrogen allows nonrefractory metals such as
copper to be used to create tracks.

 LSB
 (1) (Least Signifi cant Bit) The binary digit, or bit, in a binary number that
represents the least signifi cant value (typically the right-hand bit). (2) (Least
Signifi cant Byte) The byte in a multi-byte word that represents the least signifi -
cant values (typically the right-hand byte).

Glossary496

 LSI (Large Scale Integration)
 Refers to the number of logic gates in a device. By one convention, large-scale
integration represents a device containing 100 to 999 gates.

 LTH (Lead Through-Hole)
 A technique for populating circuit boards in which component leads are
inserted into plated through-holes. Often abbreviated to “through-hole” or
 “ thru-hole. ” When all of the components have been inserted, they are soldered
to the board, usually using a wave soldering technique.

 Macro Cell
 See Hard Macro.

 Macro Function
 See Soft Macro.

 Magnetic Random Access Memory
 See MRAM.

 Magnetic Tunnel Junction
 See MTJ.

 Mask
 See Optical Mask.

 Mask Programmable
 A device such as a read-only memory, which is programmed during its con-
struction using a unique set of masks.

 Maximal Displacement
 A linear feedback shift register whose taps are selected such that changing a
single bit in the input data stream will cause the maximum possible disruption
to the register’s contents.

 Maximal Length
 A linear feedback shift register that sequences through (2 n–1) states before
returning to its original value.

 Maxterm
 The logical OR of the inverted variables associated with an input combination
to a logical function.

 MBE (Molecular Beam Epitaxy)
 A technique for creating thin fi lms on substrates in precise patterns, in which the
substrate is placed in a high vacuum, and a guided beam of ionized molecules is

 Glossary 497

fi red at it, effectively allowing molecular-thin layers to be “ painted ” onto the sub-
strate where required.

 MCM (Multichip Module)
 A generic name commonly used in the late 1990s for a group of advanced inter-
connection and packaging technologies featuring unpackaged integrated circuits
mounted directly onto a common substrate. Today, MCMs would be regarded as
being forerunners of System-in-Package (SiP) technology.

 Medium-Scale Integration
 See MSI.

 Mega
 Unit qualifi er (symbol � M) representing one million, or 10 6. For example,
3 MHz stands for 3 � 10 6 hertz.

 Memory Cell
 A unit of memory used to store a single binary digit, or bit, of data.

 Memory Word
 A number of memory cells logically and physically grouped together. All the
cells in a word are typically written to, or read from, at the same time.

 Metallization Layer
 A layer of conducting material on an integrated circuit that is selectively deposited
or etched to form connections between logic gates. There may be several metalli-
zation layers separated by dielectric (insulating) layers.

 Metal-Oxide Semiconductor
 See MOS.

 Meta-Stable
 A condition where the outputs of a logic function are oscillating uncontrolla-
bly between undefi ned values.

 Micro
 Unit qualifi er (symbol � μ) representing one millionth, or 10 � 6. For example,
3 μ S stands for 3 � 10 � 6 seconds.

 Microcontroller (μ C)
 A microprocessor augmented with special-purpose inputs, outputs, and control
logic like counter-timers.

 Microprocessor (μ P)
 A general-purpose computer implemented on a single integrated circuit (or
sometimes on a group of related chips called a chipset).

Glossary498

 Milli
 Unit qualifi er (symbol � m) representing one thousandth, or 10 � 3. For example,
3 ms stands for 3 � 10 � 3 seconds.

 Minimization
 The process of reducing the complexity of a Boolean expression.

 Minterm
 The logical AND of the variables associated with an input combination to a
logical function.

 Mixed-signal
 Typically refers to an integrated circuit that contains both analog and digital
elements.

 Mod
 See Modulus.

 Modulo
 See Modulus.

 Modulus
 Refers to the number of states that a function such as a counter will pass
through before returning to its original value. For example, a function that
counts from 0000 2 to 1111 2 (0 to 15 in decimal) has a modulus of 16 and
would be called a modulo-16 or mod-16 counter.

 Molecular Beam Epitaxy
 See MBE.

 Moore’s Law
 In 1965, Gordon Moore (who was to cofound Intel Corporation in 1968)
noted that new generations of memory devices were released approximately
every 18 months, and that each new generation of devices contained roughly
twice the capacity of its predecessor. This observation subsequently became
known as Moore’s Law, and it has been applied to a wide variety of electronics
trends.

 MOS (Metal-Oxide Semiconductor)
 A family of transistors.

 Most-Signifi cant Bit
 See MSB.

 Glossary 499

 Most-Signifi cant Byte
 See MSB.

 Motherboard
 A backplane containing active components such as integrated circuits.

 MSB
 (1) (Most Signifi cant Bit) The binary digit, or bit, in a binary number that
represents the most signifi cant value (typically the left-hand bit). (2) (Most
Signifi cant Byte) The byte in a multi-byte word that represents the most sig-
nifi cant values (typically the left-hand byte).

 MSI (Medium Scale Integration)
 Refers to the number of logic gates in a device. By one convention, medium-scale
integration represents a device containing 13 to 99 gates.

 MTJ (Magnetic Tunnel Junction)
 A sandwich of two ferromagnetic layers separated by a thin insulating layer. An
MRAM memory cell is created by the intersection of two wires (say a “ row ” line
and a “column ” line) with an MJT sandwiched between them.

 Multichip Module
 See MCM.

 Multilayer
 A printed circuit board constructed from a number of very thin single-sided
and/or double-sided boards, which are bonded together using a combination
of temperature and pressure.

 Multiplexer (Digital)
 A logic function that uses a binary value, or address, to select between a num-
ber of inputs and conveys the data from the selected input to the output.

 Nano
 Unit qualifi er (symbol � n) representing one-thousandth of one-millionth, or
10 � 9 . For example, 3 ns stands for 3 � 10 � 9 seconds.

 Nanobot
 A molecular-sized robot. See also Nanotechnology.

 Nanophase Materials
 A form of matter that was only (relatively) recently discovered, in which small
clusters of atoms form the building blocks of a larger structure. These structures
differ from those of naturally occurring crystals, in which individual atoms
arrange themselves into a lattice.

Glossary500

 Nanotechnology
 This is an elusive term that is used by different research and development teams
to refer to whatever it is that they’re working on at the time. However, regardless
of their area of interest, nanotechnology always refers to something extremely
small. Perhaps the “purest” form of nanotechnology is that of molecular-sized
units that assemble themselves into larger products.

 Nanotubes
 A structure that may be visualized as taking a thin sheet of carbon and rolling it
into a tube. Nanotubes can be formed with walls that are only one atom thick.
The resulting tube has a diameter of 1 nano (one thousandth of one millionth
of a meter). Nanotubes are an almost ideal material: they are stronger than steel,
have excellent thermal stability, and they are also tremendous conductors of heat
and electricity. In addition to acting as wires, nanotubes can be persuaded to act
as transistors—this means that we now have the potential to replace silicon tran-
sistors with molecular-sized equivalents at a level where standard semiconduc-
tors cease to function.

 Negative-Edge
 Beware, here be dragons! In this book a negative-edge is defi ned as a transition
from a logic 1 to a logic 0. This defi nition is therefore consistent with the other
defi nitions used throughout the book, namely those for active-high, active-low,
assertion-level logic, positive-logic, and negative-logic. It should be noted, however,
that some would defi ne a negative-edge as “a transition from a higher to a lower volt-
age level, passing through a threshold voltage level. ” However, this defi nition serves
only to cause confusion when combined with negative-logic implementations.

 Negative Ion
 An atom or group of atoms with an extra electron.

 Negative Logic
 A convention dictating the relationship between logical values and the physical
voltages used to represent them. Under this convention, the more negative potential
is considered to represent TRUE and the more positive potential is considered to
represent FALSE.

 Negative Resist
 A process in which ultraviolet radiation passing through the transparent areas
of a mask causes the resist to be cured. The uncured areas are then removed
using an appropriate solvent.

 Negative-True
 See Negative Logic.

 Glossary 501

 Nibble
 See Nybble.

 NMOS (N-channel MOS)
 Refers to the order in which the semiconductor is doped in a MOS device. That
is, which structures are constructed as N-type versus P-type material.

 Noble Gas
 Gases whose outermost electron shells are completely fi lled with electrons. Such
gases are extremely stable and it is diffi cult to coerce them to form compounds
with other elements. There are six noble gases: helium, 9 neon, argon, krypton,
xenon, and radon. This group of elements was originally known as the inert gases,
but in the early 1960s it was found to be possible to combine krypton, xenon,
and radon with fl uorine to create compounds. Although helium, neon, and argon
continue to resist, there is an increasing trend to refer to this group of gases as
noble rather than inert.

 Noble Metal
 Metals such as gold, silver, and platinum that are extremely inactive and are
unaffected by air, 10 heat, moisture, and most solvents.

 Noise
 The miscellaneous rubbish that gets added to a signal on its journey through a
circuit. Noise can be caused by capacitive or inductive coupling, or from exter-
nally generated electromagnetic interference.

 Nonrecurring Engineering
 See NRE.

 Nonvolatile
 A memory device that does not lose its data when power is removed from the
system.

 Nonvolatile RAM (nV RAM)
 A device that is generally formed from an SRAM die mounted in a package
with a very small battery, or as a mixture of SRAM and E 2PROM cells fabricated
on the same die.

 9 The second most common element in the universe (after hydrogen).
 10Before you start penning letters of protest, silver can be attacked by sulfur and sulfi des,
which occur naturally in the atmosphere. Thus, the tarnishing seen on your mother’s silver
candlesticks is actually silver sulfi de and not silver oxide.

Glossary502

 NPN (N-type P-type N-type)
 Refers to the order in which the semiconductor is doped in a bipolar junction
transistor.

 NRE (Nonrecurring Engineering)
 This typically refers to the costs associated with developing an ASIC or ASSP. The
NRE depends on a number of factors, including the complexity of the design, the
style of packaging, and who does what in the design fl ow (that is, how the vari-
ous tasks are divided between the system design house and the ASIC vendor).

 N-type
 A piece of semiconductor doped with impurities that make it amenable to
donating electrons.

 Nybble
 A group of four binary digits, or bits.

 Octal
 Base-8 numbering system. Each octal digit can be directly mapped onto three
binary digits, or bits.

 Ohm
 Unit of resistance. The Greek letter omega, Ω, is often used to represent ohms;
for example, 1 M Ω indicates one million ohms.

 One-Hot Encoding
 A form of state assignment for state machines in which each state is repre-
sented by an individual state variable.

 One-Time Programmable
 A device such as a PAL, PLA, or PROM that can be programmed a single time
and whose contents cannot be subsequently erased.

 Operating System
 The collective name for the set of master programs that control the core opera-
tion and the base-level user-interface of a computer.

 Optical Interconnect
 The generic name for interconnection strategies based on optoelectronic sys-
tems, including fi ber-optics, free-space, guided-wave, and holographic techniques.

 Optical Lithography
 A process in which radiation at optical wavelengths (usually in the ultraviolet (UV)
and extreme ultraviolet (EUV) ranges) is passed through a mask, and the resulting
patterns are projected onto a layer of resist coating the substrate material.

 Glossary 503

 Optical Mask
 A sheet of material carrying patterns that are either transparent or opaque to
the wavelengths used in an optical-lithographic process. Such a mask can carry
millions of fi ne lines and geometric shapes.

 Optoelectronic
 Refers to a system that combines optical and electronic components.

 Organic Resist
 A material that is used to coat a substrate and is then selectively cured to form
an impervious layer. These materials are called organic because they are based
on carbon compounds as are living creatures.

 Organic Solvent
 A solvent for organic materials such as those used to form organic resists.

 Organic Substrate
 Substrate materials such as FR4, in which woven glass fi bers are bonded
together with an epoxy. These materials are called organic because epoxies are
based on carbon compounds as are living creatures.

 Overglassing
 One of the fi nal stages in the integrated circuit fabrication process in which the
entire surface of the wafer is coated with a layer of silicon dioxide or silicon
nitride. This layer may also be referred to as the barrier layer or the passivation
layer. An additional lithographic step is required to pattern holes in this layer
to allow connections to be made to the pads.

 Pad
 An area of metallization on a substrate used for probing or to connect to a via,
plated through-hole, or an external interconnect.

 Padcap
 A special fl avor of circuit board used for high-reliability military applications,
also known as pads-only-outer-layers. Distinguished by the fact that the outer
surfaces of the board have pads but no tracks. Signal layers are only created on
the inner planes, and tracks are connected to the surface pads by vias.

 Pad Grid Array
 See PGA.

 Pad Stack
 Refers to any pads, anti-pads, and thermal relief pads associated with a via or a
plated through-hole as it passes through the layers forming the substrate.

Glossary504

 PAL (Programmable Array Logic) 11
 A programmable logic device in which the AND array is programmable but the
OR array is predefi ned. See also PLA, PLD, and PROM .

 Parallel-In Serial-Out
 See PISO.

 Parasitic Effects
 The effects caused by undesired resistive, capacitive, or inductive elements
inherent in the material or topology of a track or component.

 Passivation Layer
 See Overglassing.

 Passive Trimming
 A process in which a laser beam is used to trim components such as thick-fi lm
and thin-fi lm resistors on an otherwise unpopulated and unpowered hybrid or
System-in-Package (SiP) substrate. Probes are placed at each end of a component
to monitor its value while the laser cuts away (evaporates) some of the material
forming the component.

 Pass-Transistor Logic
 A technique for connecting MOS transistors such that data signals pass between
their source and drain terminals. Pass-transistor logic minimizes the number
of transistors required to implement a function, and is typically employed by
designers of cell libraries or full-custom integrated circuits.

 PC100
 A popular form of SDRAM-based computer memory that runs at 100 MHz (the
data bus is 64-bits wide, although 128-bit-wide versions (using dual 64-bit
cards in parallel) have been used in high-end machines).

 PC133
 A popular form of SDRAM-based computer memory that runs at 133 MHz (the
data bus is 64-bits wide, although 128-bit-wide versions (using dual 64-bit
cards in parallel) have been used in high-end machines).

 PCB (Printed Circuit Board)
 A type of circuit board that has conducting tracks superimposed, or “printed,”
on one or both sides, and may also contain internal signal layers and power
and ground planes. An alternative name, Printed Wire Board (PWB), is com-
monly used in America.

 11 PAL is a registered trademark of Monolithic Memories, Inc.

 Glossary 505

 Peta
 Unit qualifi er (symbol � P) representing one thousand million million, or 10.
For example, 3 PHz stands for 3 � 1015 hertz.

 PGA
 (1) (Pad Grid Array) A packaging technology in which a device’s external con-
nections are arranged as an array of conducting pads on the base of the package.
(2) (Pin Grid Array) A packaging technology in which a device’s external con-
nections are arranged as an array of conducting leads, or pins, on the base of
the package.

 PHB (Photochemical Hole Burning)
 An optical memory technique, in which a laser in the visible waveband is directed
at a microscopic point on the surface of a slice of glass that has been doped with
organic dyes or rare-earth elements. The laser excites electrons in the glass such
that they change the absorption characteristics of that area of the glass and leave a
band, or hole, in the absorption spectrum.

 Photochemical Hole Burning
 See PHB.

 Phototransistor
 A special transistor that converts an optical input in the form of light into an
equivalent electronic signal in the form of a voltage or current.

 Pico
 Unit qualifi er (symbol � p) representing one-millionth of one-millionth, or
10 � 12 . For example, 3 ps stands for 3 � 10 � 12 seconds.

 Pin
 See Lead.

 Pin Grid Array
 See PGA.

 PISO (Parallel-In Serial Out)
 Refers to a shift register in which the data is loaded in parallel and read out
serially.

 PLA (Programmable Logic Array)
 The most user-confi gurable of the traditional programmable logic devices,
because both the AND and OR arrays are programmable. See also PAL, PLD,
and PROM.

Glossary506

 Place Value
 Refers to a numbering system in which the value of a particular digit depends
both on the digit itself and its position in the number.

 Plasma
 A gaseous state in which the atoms or molecules are dissociated to form ions.

 Plated Through-Hole
 See PTH.

 PLD (Programmable Logic Device)
 The generic name for a device constructed in such a way that the designer can
confi gure, or “program” it to perform a specifi c function. See also PAL, PLA, and
PROM.

 PMOS (P-channel MOS)
 Refers to the order in which the semiconductor is doped in a MOS device. That
is, which structures are constructed as P-type versus N-type material.

 PNP (P-type N-type P-type)
 Refers to the order in which the semiconductor is doped in a bipolar junction
transistor.

 Polysilicon Layer
 An internal layer in an integrated circuit used to create the gate electrodes of MOS
transistors. In addition to forming gate electrodes, the polysilicon layer can also
be used to interconnect components. There may be several polysilicon layers sepa-
rated by dielectric (insulating) layers.

 Populating
 The act of attaching components to a substrate.

 Positive-Edge
 Beware, here be dragons! In this book a positive-edge is defi ned as a transition
from a logic 0 to a logic 1. This defi nition is therefore consistent with the other
defi nitions used throughout the book, namely those for active-high, active-low,
assertion-level logic, positive-logic, and negative-logic. It should be noted, however,
that some would defi ne a positive-edge as “a transition from a lower to a higher volt-
age level, passing through a threshold voltage level. ” However, this defi nition serves
only to cause confusion when combined with negative-logic implementations.

 Positive Ion
 An atom or group of atoms lacking an electron.

 Glossary 507

 Positive Logic
 A convention that dictates the relationship between logical values and the
physical voltages used to represent them. Under this convention, the more pos-
itive potential is considered to represent TRUE and the more negative potential
is considered to represent FALSE.

 Positive Resist
 A process in which radiation passing through the transparent areas of a mask
causes previously cured resist to be degraded. The degraded areas are then
removed using an appropriate solvent.

 Positive-True
 See Positive Logic.

 Power Plane
 A conducting layer in or on the substrate providing power to the components.
There may be several power planes separated by insulating layers.

 Precedence of Operators
 Determines the order in which operations are performed. For example, in stan-
dard arithmetic the multiplication operator has a higher precedence than the
addition operator. Thus, in the equation 6 � 2 � 3, the multiplication is per-
formed before the addition and the result is 12. Similarly, in Boolean Algebra,
the AND operator has a higher precedence than the OR operator.

 Prepreg
 Nonconducting semi-cured layers of FR4 used to separate conducting layers in
a multilayer circuit board.

 Primitives
 Simple logic functions such as BUF, NOT, AND, NAND, OR, NOR, XOR, and
XNOR. These may also be referred to as primitive logic gates.

 Printed Circuit Board
 See PCB.

 Printed Wire Board
 See PWB.

 Product-of-Sums
 A Boolean equation in which all of the maxterms corresponding to the lines in the
truth table for which the output is a logic 0 are combined using AND operators.

 Product Term
 A set of literals linked by an AND operator.

Glossary508

 Programmable Array Logic
 See PAL.

 Programmable Logic Array
 See PLA.

 Programmable Logic Device
 See PLD.

 Programmable Read-Only Memory
 See PROM.

 PROM (Programmable Read-Only Memory)
 A programmable logic device in which the OR array is programmable but the AND
array is predefi ned. Usually considered to be a memory device whose contents can
be electrically programmed (once) by the designer. See also PAL, PLA, and PLD.

 Proposition
 A statement that is either true or false with no ambiguity. For example, the
proposition “I just tipped a bucket of burning oil into your lap ” is either true or
false, but there’s no ambiguity about it.

 Protein
 A complex organic molecule formed from chains of amino acids, which are
themselves formed from combinations of certain atoms, namely: carbon, hydro-
gen, nitrogen, oxygen, usually sulfur, and occasionally phosphorous or iron.
Additionally, the chain of amino acids “folds in on itself, ” thereby forming an
extremely complex three-dimensional shape. Organic molecules have a number
of useful properties, not the least of which is that their structures are intrinsically
“self healing ” and reject contamination. Also, in addition to being extremely small,
many organic molecules have excellent electronic properties. Unlike metallic con-
ductors, they transfer energy by moving electron excitations from place to place
rather than relocating entire electrons. This can result in switching speeds that are
orders of magnitude faster than their semiconductor equivalents.

 Protein Memory
 A form of memory based on organic proteins. See also Protein.

 Protein Switch
 A form of switch based on organic proteins. See also Protein.

 Pseudo-Random
 An artifi cial sequence of values that give the appearance of being random, but
which are also repeatable.

 Glossary 509

 PTH (Plated Through-Hole)
 (1) A hole in a double-sided or multilayer board that is used to accommodate
a through-hole component lead and is plated with copper. (2) An alternative
name for the Lead Through-Hole (LTH) technique for populating circuit boards
in which component leads are inserted into plated through-holes.

 P-type
 A piece of semiconductor doped with impurities that make it amenable to
accepting electrons.

 PWB (Printed Wire Board)
 A type of circuit board that has conducting tracks superimposed, or “ printed, ”
on one or both sides, and may also contain internal signal layers and power
and ground planes. An alternative name, Printed Circuit Board (PCB), is pre-
dominantly used in Europe and Asia.

 QDR (Quad Data Rate)
 A modem form of SDRAM-based memory. The original SDRAM specifi cation
was based on using one of the clock edges only (say the rising edge) to read/
write data out-of/into the memory. QDR refers to memory that has separate data
in and data out busses both designed in such a way that data can be read/written
on both edges of the clock. This effectively quadruples the amount of data that
can be pushed through the system without increasing the clock frequency (like
many things this sounds simple if you say it fast, but making this work is trickier
than it may at fi rst appear). See also DDR and SDRAM.

 QFP (Quad Flat Pack)
 The most commonly used package in surface mount technology to achieve a
high lead count in a small area. Leads are presented on all four sides of a thin
square package.

 Quad Date Rate
 See QDR.

 Quad Flat Pack
 See QFP.

 Quantization
 Part of the process by which an analog signal is converted into a series of digi-
tal values. First of all the analog signal is sampled at specifi c times. For each
sample, the complete range of values that the analog signal can assume is
divided into a set of discrete bands or quanta. Quantization refers to the pro-
cess of determining which band the current sample falls into. See also Sampling.

Glossary510

 Quinary
 Base-5 numbering system.

 Radix
 Refers to the number of digits in a numbering system. For example, the decimal
numbering system is said to be radix-10. May also be referred to as the “base. ”

 RAM (Random Access Memory)
 A data storage device from which data can be read out and new data can be
written in. Unless otherwise indicated, the term RAM is typically taken to refer
to a semiconductor device in the form of an integrated circuit.

 RDRAM (Rambus DRAM)
 A form of DRAM computer memory based on Rambus technology. See also Rambus.

 Read-Only Memory
 See ROM.

 Read-Write Memory
 See RWM.

 Real Estate
 Refers to the amount of area available on a substrate .

 Reed-Müller Logic
 Logic functions implemented using only XOR and XNOR gates.

 Refl ow Oven
 An oven employing Infrared (IR) radiation or hot air.

 Refl ow Soldering
 A surface mount technology process in which the substrate and attached compo-
nents are passed through a refl ow oven to melt the solder paste.

 Refractory Metal
 Metals such as tungsten, titanium, and molybdenum (try saying this last one
quickly), which are capable of withstanding extremely high, or refractory,
temperatures.

 Register Transfer Level
 See RTL.

 Remotely Reconfi gurable Hardware
 A product whose function may be customized remotely, by telephone or radio,
while remaining resident in the system.

 Glossary 511

 Resist
 A material that is used to coat a substrate and is then selectively cured to form
an impervious layer.

 Resistor-Transistor Logic
 See RTL.

 Rigid Flex
 Hybrid constructions that combine standard rigid circuit boards with fl exible
printed circuits (fl ex), thereby reducing the component count, weight, and sus-
ceptibility to vibration of the circuit, and greatly increasing its reliability.

 RIMM
 This really doesn’t stand for anything, per se, but it is the trademarked name
for a Rambus memory module. RIMMs are similar in concept to DIMMs, but
have a different pin count and confi guration. See also DIMM and SIMM .

 Rising-Edge
 See Positive-Edge.

 ROM (Read-Only Memory)
 A data storage device from which data can be read out, but new data cannot be
written in. Unless otherwise indicated, the term ROM is typically taken to refer
to a semiconductor device in the form of an integrated circuit.

 RTL
 (1) (Register Transfer Level) A relatively high level of abstraction at which design
engineers capture the functionality of digital integrated circuit designs described
using a Hardware Description Language (HDL). (2) (Resistor-Transistor Logic)
Logic gates implemented using particular confi gurations of resistors and bipolar
junction transistors. For the majority of today’s designers, resistor-transistor logic
is of historical interest only.

 RWM (Read-Write Memory)
 Alternative (and possibly more appropriate) name for a Random Access Memory
(RAM).

 Sampling
 Part of the process by which an analog signal is converted into a series of digi-
tal values. Sampling refers to observing the value of the analog signal at specifi c
times. See also Quantization.

Glossary512

 Scalar Notation
 A notation in which each signal is assigned a unique name; for example, a3, a2,
a1, and a0. See also Vector Notation.

 Scaling
 A technique for making transistors switch faster by reducing their size. This
strategy is known as scaling, because all of the transistor’s features are typically
reduced by the same proportion.

 Schematic
 Common name for a circuit diagram.

 Schematic Capture
 A software program used to capture schematic diagrams.

 Scrubbing
 The process of vibrating two pieces of metal (or metal-coated materials) at
ultrasonic frequencies to create a friction weld.

 SDRAM (Synchronous DRAM)
 Until the latter half of the 1990s, DRAM-based computer memories were asyn-
chronous, which means they weren’t synchronized to the system clock. Over
time, the industry migrated to Synchronous DRAM (SDRAM), which is synchro-
nized to the system clock and makes everyone’s lives much easier. Note that
SDRAM is based on core DRAM concepts it’s all in the way you tweak the chips
and connect them together.

 Sea-of-Cells
 Popular name for a channel-less gate array.

 Sea-of-Gates
 Popular name for a channel-less gate array.

 Seed Value
 An initial value loaded into a Linear Feedback Shift Register or random number
generator.

 Semiconductor
 A special class of material that can exhibit both conducting and insulating
properties.

 Sensor
 A transducer that detects a physical quantity and converts it into a form suit-
able for processing. For example, a microphone is a sensor that detects sound
and converts it into a corresponding voltage or current.

 Glossary 513

 Sequential
 A function whose output value depends not only on its current input val-
ues, but also on previous input values. That is, the output value depends on a
sequence of input values.

 Serial-In Parallel-Out
 See SIPO.

 Serial-In Serial-Out
 See SISO.

 Sexagesimal
 Base-60 numbering system.

 Side-Emitting Laser Diode
 A laser diode constricted at the edge of an integrated circuit’s substrate such
that, when power is applied, the resulting laser beam is emitted horizontally;
that is, parallel to the surface of the substrate.

 Signal Conditioning
 Amplifying, fi ltering, or otherwise processing a (typically analog) signal.

 Signal Layer
 A layer carrying tracks in a circuit board, hybrid, or System-in-Package (SiP).

 Signature
 Refers to the checksum value from a Cyclic-Redundancy Check (CRC) when used
in the guided-probe form of functional test.

 Signature Analysis
 A guided-probe functional-test technique based on signatures.

 Sign Bit
 The most signifi cant binary digit, or bit, of a signed binary number (if set to a
logic 1, this bit represents a negative quantity).

 Signed Binary Number
 A binary number in which the most-signifi cant bit is used to represent a nega-
tive quantity. Thus, a signed binary number can be used to represent both posi-
tive and negative values.

 Sign-Magnitude
 Negative numbers in standard arithmetic are typically represented in sign-magnitude
form by prefi xing the value with a minus sign: for example, �27. For reasons of
effi ciency, computers rarely employ the sign-magnitude form. Instead, they use
signed binary numbers to represent negative values.

Glossary514

 Silicon Bumping
 The process of depositing additional metallization on a die’s pads to raise them
fractionally above the level of the barrier layer.

 Silicon Chip
 Although a variety of semiconductor materials are available, the most commonly
used is silicon, and integrated circuits are popularly known as silicon chips, or
simply chips .

 Silicon Compiler
 The program used in compiled cell technology to generate the masks used to
create components and interconnections. May also be used to create data-path
functions and memory functions.

 SIMM (Single Inline Memory Module)
 A single memory integrated circuit can only contain a limited amount of data,
so a number are gathered together onto a small circuit board called a memory
module. Each memory module has a line of gold-plated pads on both sides of
one edge of the board. These pads plug into a corresponding connector on the
main computer board. A single inline memory module (SIMM) has the same elec-
trical signal on corresponding pads on the front and back of the board (that is,
the pads on opposite sides of the board are “tied together ”). See also DIMM
and RIMM .

 Simple PLD
 See SPLD.

 Single Inline Memory Module
 See SIMM.

 Single-Sided
 A printed circuit board with tracks on one side only.

 Sintering
 A process in which ultra-fi ne metal powders weld together at temperatures
much lower than those required for larger pieces of the same materials.

 SiP (System-in-Package)
 A sophisticated package in which multiple silicon chips and other components
are presented in a single package. The chips may be bare die or presented as
Chip Scale Packages (CSP); also, the chips may provide a mixture of analog and
digital functions.

 Glossary 515

 SIPO (Serial-In Parallel-Out)
 Refers to a shift register in which the data is loaded in serially and read out in
parallel.

 SISO (Serial In Serial-Out)
 Refers to a shift register in which the data is both loaded in and read out
serially.

 Skin Effect
 In the case of high frequency signals, electrons are only conducted on the outer
surface, or skin, of a conductor. This phenomenon is known as the skin effect.

 Small-Scale Integration
 See SSI.

 SMD (Surface Mount Device)
 A component whose packaging is designed for use with Surface Mount Technology.

 SMOBC (Solder Mask Over Bare Copper)
 A technique in which the solder mask is applied in advance of the tin-lead plat-
ing. This prevents solder from leaking under the mask when the tin-lead alloy
melts during the process of attaching components to the board.

 SMT (Surface Mount Technology)
 A technique for populating hybrids, multi-chip modules, and circuit boards,
in which packaged components are mounted directly onto the surface of the
substrate. A layer of solder paste is screen-printed onto the pads, and the com-
ponents are attached by pushing their leads into the paste. When all of the
components have been attached, the solder paste is melted using either refl ow
soldering or vapor-phase soldering .

 SoC (System-on-Chip)
 In the past, an electronic system was typically composed of a number of inte-
grated circuits, each with its own particular function (say a microprocessor, a
communications function, some memory devices, etc.). For many of today’s
high-end applications, however, electronics engineers are combining all of these
functions on a single device, which may be referred to as a system-on-chip (SoC).

 Soft Macro (Macro Function)
 A logic function defi ned by the manufacturer of an Application-Specifi c Integrated
Circuit (ASIC) or by a third-party IP provider. The function is described in terms
of the simple functions provided in the cell library and connections between
them. The assignment of cells to basic cells and the routing of the tracks is

Glossary516

determined at the same time, and using the same tools, as for the other cells
specifi ed by the designer.

 Software
 Refers to intangible programs, or sequences of instructions, that are executed
by hardware.

 Solder
 An alloy with a comparatively low melting point used to join less fusible met-
als. Note that the solder used in a brazing process is of a different type, being a
hard solder with a comparatively high melting point composed of an alloy of
copper and zinc (brass).

 Solder Bump Bonding
 A fl ip-chip technique (also known as Solder Bumping) for attaching a die to a
package substrate. A minute ball of solder is attached to each pad on the die, and
the die is fl ipped over and attached to the package substrate. Each pad on the die
has a corresponding pad on the package substrate, and the package-die combo
is heated so as to melt the solder balls and form good electrical connections
between the die and the substrate. See also Solder Bumping.

 Solder Bumping
 A fl ipped chip technique (also known as Solder Bump Bonding) in which spheres
of solder are formed on the die’s pads. The die is fl ipped and the solder bumps
are brought into contact with corresponding pads on the substrate. When all
the chips have been mounted on the substrate, the solder bumps are melted
using refl ow soldering or vapor-phase soldering. See also Solder Bump Bonding.

 Solder Mask
 A layer applied to the surface of a printed circuit board that prevents solder from
sticking to any metallization except where holes are patterned into the mask.

 Solder Mask Over Bare Copper
 See SMOBC.

 Space
 Used to refer to the width of the gap between adjacent tracks.

 SPLD (Simple PLD)
 Originally all PLDs contained a modest number of equivalent logic gates and
were fairly simple. As more Complex PLDs (CPLDs) arrived on the scene, however,
it became common to refer to their simpler cousins as Simple PLDs (SPLDs).

 Glossary 517

 SRAM (Static RAM)
 A memory device in which each cell is formed from four or six transistors con-
fi gured as a latch or a fl ip-fl op. The term static is used because, once a value has
been loaded into an SRAM cell, it will remain unchanged until it is explicitly
altered or until power is removed from the device.

 SSI (Small Scale Integration)
 Refers to the number of logic gates in a device. By one convention, small-scale
integration represents a device containing 1 to 12 gates.

 Standard Cell
 A form of Application-Specifi c Integrated Circuit (ASIC), which, unlike a gate array,
does not use the concept of a basic cell and does not have any prefabricated
components. The ASIC vendor creates custom masks for every stage of the
device’s fabrication, allowing each logic function to be created using the mini-
mum number of transistors.

 State Assignment
 The process by which the states in a state machine are assigned to the binary
patterns that are to be stored in the state variables.

 State Diagram
 A graphical representation of the operation of a state machine.

 State Machine
 See FSM.

 Statement
 A sentence that asserts or denies an attribute about an object or group of
objects. For example, “ Your face resembles a cabbage. ”

 State Table
 A tabular representation of the operation of a state machine. Similar to a truth
table, but also includes the current state as an input and the next state as an
output.

 State Transition
 An arc connecting two states in a state diagram.

 State Variable
 One of a set of registers whose values represent the current state occupied by a
state machine.

Glossary518

 Static Flex
 A type of fl exible printed circuit that can be manipulated into permanent three-
dimensional shapes for applications such as calculators and high-tech cameras,
which require effi cient use of volume and not just area.

 Static RAM
 See SRAM.

 Steady State
 A condition in which nothing is changing or happening.

 Subatomic Erosion
 See Electromigration.

 Substrate
 Generic name for the base layer of an integrated circuit, hybrid, System-in-
Package (SiP), or circuit board. Substrates may be formed from a wide variety of
materials, including semiconductors, ceramics, FR4 (fi berglass), glass, sapphire,
or diamond depending on the application. Note that the term “substrate” has
traditionally not been widely used in the circuit board world, at least not by the
people who manufacture the boards. However, there is an increasing tendency
to refer to a circuit board as a substrate by the people who populate the boards.
The main reason for this is that circuit boards are often used as substrates in
hybrids and System-in-Packages (SiPs), and there is a trend toward a standard
terminology across all forms of interconnection technology.

 Subtractive Process
 A process in which a substrate is fi rst covered with conducting material, and
then any unwanted material is subsequently removed, or subtracted.

 Sum-of-Products
 A Boolean equation in which all of the minterms corresponding to the lines in the
truth table for which the output is a logic 1 are combined using OR operators.

 Superconductor
 A material with zero resistance to the fl ow of electric current.

 Surface-Emitting Laser Diode
 A laser diode constricted on an integrated circuit’s substrate such that, when
power is applied, the resulting laser beam is emitted directly away from the sur-
face of the substrate.

 Surface Mount Device
 See SMD.

 Glossary 519

 Surface Mount Technology
 See SMT.

 Symbolic Logic
 A mathematical form in which propositions and their relationships may be rep-
resented symbolically using Boolean equations, truth tables, Karnaugh Maps, or
similar techniques.

 Synchronous
 (1) A signal whose data is not acknowledged or acted upon until the next
active edge of a clock signal. (2) A system whose operation is synchronized by
a clock signal.

 Synchronous DRAM
 See SDRAM.

 System-in-Package
 See SiP.

 System-on-Chip
 See SoC.

 TAB (Tape-Automated Bonding)
 A process in which transparent fl exible tape has tracks created on its surface.
The pads on unpackaged integrated circuits are attached to corresponding
pads on the tape, which is then stored in a reel. Silver-loaded epoxy is screen
printed on the substrate at the site where the device is to be located and onto
the pads to which the device’s leads are to be connected. The reel of TAB tape is
fed through an automatic machine, which pushes the device and the TAB leads
into the epoxy. When the silver-loaded epoxy is cured using refl ow soldering or
vapor-phase soldering, it forms electrical connections between the TAB leads and
the pads on the substrate.

 Tap
 A register output that is used to generate the next data input to a linear feed-
back shift register.

 Tape Automated Bonding
 See TAB.

 Tera
 Unit qualifi er (symbol � T) representing one million million, or 10 12. For
example, 3 THz stands for 3 � 1012 hertz.

Glossary520

 Tertiary
 Base-3 numbering system.

 Tertiary Digit
 A numeral in the tertiary scale of notation. A tertiary digit can adopt one of
three states: 0, 1, or 2. Often abbreviated to “trit.”

 Tertiary Logic
 An experimental technology in which logic gates are based on three distinct
voltage levels. The three voltages are used to represent the tertiary digits 0, 1,
and 2, and their logical equivalents FALSE, TRUE, and MAYBE.

 Thermal Relief Pad
 A special pattern etched around a via or a plated through-hole to connect it
into a power or ground plane. A thermal relief pad is necessary to prevent too
much heat being absorbed into the power or ground plane when the board is
being soldered.

 Thermal Tracking
 Typically used to refer to the problems associated with optical interconnection
systems whose alignment may be disturbed by changes in temperature.

 Thick-Film Process
 A process used in the manufacture of hybrids and System-in-Packages (SiPs)
in which signal and dielectric (insulating) layers are screen-printed onto the
substrate.

 Thin-Film Process
 A process used in the manufacture of hybrids and System-in-Packages (SiPs) in
which signal layers and dielectric (insulating) layers are created using opto-lith-
ographic techniques.

 Through-Hole
 See Lead Through-Hole, Plated Through-Hole, and Through-Hole Via.

 Through-Hole Via
 A via that passes all the way through the substrate.

 Thru-Hole
 A commonly used abbreviation of “through-hole. ”

 Time-of-Flight
 The time taken for a signal to propagate from one logic gate, integrated circuit
output, or optoelectronic component to another.

 Glossary 521

 Tinning
 An electroless plating process in which exposed areas of copper on a circuit
board are coated with a layer of protective alloy. The alloy is used to prevent
the copper from oxidizing and provides protection against contamination.

 Toggle
 Refers to the contents or outputs of a logic function switching to the inverse of
their previous logic values.

 Trace
 See Track.

 Track
 A conducting connection between electronic components. May also be called
a trace or a signal. In the case of integrated circuits, such interconnections are
often referred to collectively as metallization.

 Transducer
 A device that converts input energy of one form into output energy of another.

 Transistor
 A three-terminal semiconductor device that, in the digital world, can be con-
sidered to operate like a switch.

 Transistor-Transistor Logic
 See TTL.

 Tri-State Function
 A function whose output can adopt three states: 0, 1, and Z (high-impedance).
The function does not drive any value in the Z state and, in many respects, may
be considered to be disconnected from the rest of the circuit.

 Trit
 Abbreviation of tertiary digit. A tertiary digit can adopt one of three values: 0, 1,
or 2.

 Truth Table
 A convenient way to represent the operation of a digital circuit as columns of
input values and their corresponding output responses.

 TTL (Transistor-Transistor Logic)
 Logic gates implemented using particular confi gurations of bipolar junction
transistors.

Glossary522

 ULA (Uncommitted Logic Array)
 One of the original names used to refer to gate array devices. This term has
largely fallen into disuse.

 ULSI (Ultra-Large-Scale Integration)
 Refers to the number of logic gates in a device. By one convention, ultra-large-
scale integration represents a device containing a million or more gates.

 Ultra-Large-Scale Integration
 See ULSI.

 Uncommitted Logic Array
 See ULA.

 Unsigned Binary Number
 A binary number in which all the bits are used to represent positive quanti-
ties. Thus, an unsigned binary number can only be used to represent positive
values.

 Vapor-Phase Soldering
 A surface mount process in which a substrate carrying components attached
by solder paste is lowered into the vapor-cloud of a tank containing boiling
hydrocarbons. This melts the solder paste thereby forming good electrical con-
nections. However, vapor-phase soldering is becoming increasingly less popu-
lar due to environmental concerns.

 Vaporware
 Refers to either hardware or software that exists only in the minds of the people
who are trying to sell it to you.

 Vector Notation
 A notation in which a single name is used to reference a group of signals, and
individual signals within the group are referenced by means of an index: for
example, a[3], a[2], a[1], and a[0]. This concept of a vector is commonly used
in the context of electronics tools such as schematic capture packages, logic
simulators, and graphical waveform displays. Some people prefer to use the
phrase binary group notation, but the phrase vector notation is commonly used by
practicing electronic engineers. (Note that this type of vector notation is in no
way related to the algebraic concept of vector notation for Cartesian 2-space or
3-space.)

 Very-Large-Scale Integration
 See VLSI.

 Glossary 523

 VHDL
 A Hardware Description Language (HDL), which came out of the U.S.
Department of Defense (DoD), and which has evolved into an open standard.
VHDL is an acronym for VHSIC HDL (where VHSIC is itself an acronym for
Very High Speed Integrated Circuit).

 Via
 A hole fi lled or lined with a conducting material, which is used to link two or
more conducting layers in a substrate.

 Virtual Memory
 A trick used by a computer’s operating system to pretend that it has access to
more memory than is actually available. For example, a program running on
the computer may require 500 megabytes to store its data, but the computer
may have only 128 megabytes of memory available. To get around this prob-
lem, whenever the program attempts to access a memory location that does not
physically exist, the operating system performs a slight-of-hand and exchanges
some of the contents in the memory with data on the hard disk.

 Virus
 See Computer Virus.

 VLSI (Very Large Scale Integration)
 Refers to the number of logic gates in a device. By one convention, very-large-scale
integration represents a device containing 1000 to 999,999 gates.

 Volatile
 Refers to a memory device that loses any data it contains when power is
removed from the system: for example, random-access memory in the form of
SRAM or DRAM.

 Wafer
 A paper-thin slice cut from a cylindrical crystal of pure semiconductor.

 Wafer Probing
 The process of testing individual integrated circuits while they still form part of
a wafer. An automated tester places probes on the device’s pads, applies power
to the power pads, injects a series of signals into the input pads, and monitors
the corresponding signals returned from the output pads.

 Waveguide
 A transparent path bounded by nontransparent, refl ective areas, which is fabri-
cated directly onto the surface of a substrate. Used in the optical interconnec-
tion strategy known as guided-wave.

Glossary524

 Wave Soldering
 A process used to solder circuit boards populated with through-hole compo-
nents. A machine creates a wave 12 of hot, liquid solder that travels across the
surface of the tank. The populated circuit boards are passed over the wave-
soldering machine on a conveyer belt. The velocity of the conveyer belt is care-
fully controlled and synchronized such that the solder wave brushes across the
bottom of the board only once.

 Wire Bonding
 The process of connecting the pads on an unpackaged integrated circuit to cor-
responding pads on a substrate using wires that are fi ner than a human hair.
Wire bonding may also be used to connect the pads on an unpackaged inte-
grated circuit, hybrid, or System-in-Package (SiP) to the leads of the component
package.

 Word
 A group of signals or logic functions performing a common task and carrying
or storing similar data: for example, a value on a computer’s data bus could be
referred to as a “data word ” or “a word of data. ”

 X Architecture
 An initiative proposed by a group of companies in 2001 to use diagonal tracks to
connect functions on silicon chips (as opposed to traditional North-South and
East-West tracking layers). Initial evaluations apparently show that this diagonal
interconnect strategy can increase chip performance by 10% and reduce power
consumption by 20%. However, it may take some time for design tools and pro-
cesses (and popular acceptance) to catch up and start using this technique.

 X-Ray Lithography
 Similar in principle to optical lithography, but capable of constructing much
fi ner features due to the shorter wavelengths involved. However, X-ray lithogra-
phy requires an intense source of X-rays, is more diffi cult to use, and is consid-
erably more expensive than optical lithography.

 Yield
 The number of devices that work as planned, specifi ed as a percentage of the
total number actually fabricated.

 12 A large ripple, actually.

525

 f: footnote; s: sidebar; p: pronunciation

 Index

 Ω , 20 s
 μ , 188 f
 “ ? ” character , 123 , 127
 “ ! ” (shriek character) , 220 f , 380 – 2
 “ & ” character , 100 , 105 , 220 f , 221
 “ ̂ ” character , 220 f
 “ | ” character , 220 f
 “ ~ ” character , 130 , 138 , 378 , 425 f
 ~ chip_select signal , 199
 ~ clear inputs, 141
 ~ enable signal, 378 , 379 , 380
 ~ output_enable, 198
 ~ preset input , 141
 ~ rd, 198
 ~ reset inputs , 141
 1T versus 6T SRAM , 241 – 2
 2:1 multiplexers , 127 , 128 , 353
 2:4 decoders , 129 , 132 , 202
 III-V valence semiconductor , 45
 3:8 decoders , 130
 3-D die stacking , 295 – 6 , 304
 4:1 multiplexers , 129
 4:16 decoders , 411 , 412
 4-bit binary counter , 147 , 413
 4-bit LFSR , 413 , 417
 6T versus 1T SRAM , 241 – 2
 8:1 multiplexers , 129
 8-bit signed binary number , 94

 fi xed-point representation , 449
 54xx series , 174
 74xx series , 174
 100X multiplexing , 321
 907 device , 174
 1103 device , 175
 4004 microprocessor , 175
 4100 device , 175
 7400 device , 174
 7402 device , 174

 A
 abacus , 69
 absolute scale of temperature see

 absolute zero
 absolute zero , 336

 abstraction, levels of
 algorithmic , 354
 behavioral , 354
 functional (Boolean, RTL) ,

353 – 4
 gate-level netlist , 353
 higher , 363
 structural , 353
 switch-level netlist , 352
 transistor-level netlist , 352

 Acanthostega , 82
 Accellera committee , 357 , 359
 acceptor , 37
 active-high

 control , 58
 outputs , 129 f
 signal , 377 , 378

 active-low
 control , 58
 outputs , 129 , 130
 signal , 377 , 378

 active state , 129
 active substrates see semiconductor

substrates
 active trimming , 281 , 282
 active versus passive devices , 47
 actuator , 164
 A/D (Analog-to-Digital) converter ,

 162 – 4
 addition

 signed binary numbers , 95 – 6
 unsigned binary numbers , 88 – 9

 additive process , 255 – 7
 address

 for decoders , 129
for multiplexers , 127

 address bus , 193 , 196 , 198 , 201
 admittance , 29 – 30
 advanced packaging techniques

 3-D die stacking , 295 – 6
 chip-scale package (CSP)

technology , 294 – 5
 mind boggles , 305 – 6
 Package-In-Package (PiP) , 297

 Package-On-Package (PoP) , 297
 rabbit hole , 293
 System-In-Package (SiP) , 296 – 7

 example, based on cofi red
ceramics , 298 – 305

 substrates, positive plethora of ,
 297 – 8

 wire bonds versus fl ip-chip ,
293 – 4

 AHDL (Analog Hardware
Description Language) , 358 ,
372

 Albert Hanson , 251
 Alex M ü ller , 336
 algorithm , 435 f
 algorithmic, in level of abstraction ,

 354
 Al-Khawarizmi , 435f
 Allan Marquand , 117
 Alon Kfi r , 157 f
 Altera Corporation , 192 , 225 , 226
 alternate rounding see round-

alternate algorithm
 alternating current (AC) , 28
 alternative and future technologies

buckyballs and nanotubes ,
328 – 30

 conductive adhesives , 334 – 5
 diamond substrates

 chemical vapor deposition ,
 331 – 2

 chemical vapor infi ltration , 332
 maverick inventor , 333
 single-crystal diamond,

requirements for , 333 – 4
 ubiquitous laser beams , 332 – 3

 electromagnetic transistor
fabrication , 324 – 5

 elemental computing arrays
(ECAs) , 310 – 14

 heterojunction transistors , 325 – 7 ,
328

 mind boggles , 341 – 2
 nanotechnology , 337 – 41

Index526

alternative and future technologies
(continued)

 optical interconnect , 314
 fi ber-optic interconnect , 314 –16
 free-space interconnect , 317 ,

 318
 guided-wave interconnect ,

 318 –19 , 320
 optical memories , 320 –1
 protein switches and memories ,

 321 –4
 reconfi gurable computing , 307 –10
 smorgasbord , 307
 superconductors , 335–7

 alumina , 227
 aluminum gallium arsenide

(AlGaAs) , 46
 aluminum indium gallium

phosphite , 46
 American National Standards

Institute (ANSI) , 351 f
 American Standard Code for

Information Interchange
(ASCII) , 351 , 351 f

 American Standards Association
(ASA) , 351 f

 amino acids , 322
 amorphous crystalline structure ,

 15 , 17
 amorphous silicon , 215 –16
 Amphisbaena , 407 f
 Amplitude Modulation (AM) radio ,

 166
 amps , 19 , 19f
 Amp ère, Andr é-Marie , 19f
 analog

 circuit , 346 , 358 , 365 , 371
 design engineers , 347f , 361
 versus digital system , 3

 bricks, experiments with , 6–9
 multi-value digital systems , 5–6

 synthesis , 371 –2
 waveform , 7 , 8

 Analog Hardware Description
Language (AHDL) , 358 , 372

 Analog Signal Processing (ASP) ,
 165 –6

 analog-to-digital (A/D) converter ,
 162 –4

 analogue , 4fp
 AND gate/function , 52–3 , 60 ,

100 –1 , 126 , 132 , 389
 pass-transistor implementation ,

 423

 switch representation , 49
 transistor implementation , 61
 from two NANDs , 56

 AND-OR architecture , 223 , 223f
 Andr é-Marie Amp ère , 19f
 anisotropic adhesives see conductive

adhesives
 annoying tune , 278
 antifuse technologies , 215 –17 , 234
 anti-pads , 268 , 269
 API (Application Programming

Interface) , 348
 Application Programming Interface

(API) , 348
 Application-Specifi c Integrated

Circuits (ASICs) , 174 , 174f ,
 235

 1T versus 6T SRAM , 241 –2
 versus Application-Specifi c

Standard Product (ASSP) ,
246

 basic cell , 236
 channeled gate arrays , 237
 channel-less devices , 237
 design fl ow , 238–40
 full custom devices , 236
 gate arrays , 236–8
 hard macros , 239
 input/output cells and pads ,

 245 –6
 Micromosaic , 235
 players , 246–7
 sea-of-gates , 238
 soft macros , 239
 standard cell devices , 240–1
 structured ASICs , 242–5

 Applicon , 346
 Arabs , 70
 Aristotle , 117
 arithmetic rounding see round-half-

up algorithm
arrays , 195–6
 arsenic (As) , 45
 Arthur Berry , 251
 artifi cial bones , 277f
 ASCII (American Standard Code for

Information Interchange) ,
 351 , 351 f

 ASICs see Application-Specifi c
Integrated Circuits

 ASP (Analog Signal Processing) ,
 165 –6

 Assertion-Based Verifi cation (ABV) ,
 366

 assertion-level logic , 377
 shriek character (“! ”) , 380–2
 standard versus assertion-level

logic , 378
 associative rules , 104
 ASSPs versus ASICs , 246
 Assyrians , 71
 Atalla, Martin M. , 41
 Atmel Corporation , 472f
 atoms , 11

 boron atoms (B) , 36 , 37 , 428
 carbon atom , 15f
 germanium atom , 327
 helium atom , 11 , 12 , 14 , 14f
 hydrogen atom , 12
 isotopes , 12
 negative ion , 12
 oxygen atom , 14
 phosphorus atoms , 36 , 37
 positive ion , 12
 silicon atom , 15

 ATPG (Automatic Test Pattern
Generator) , 376

 atto , 31
 Augustus DeMorgan , 106
 Aurignacian period , 67
 Automatic Test Pattern Generator

(ATPG) , 376
 “automation” , 347–8
 Aztecs , 76

 B
 Babylonians , 71
 backplanes , 271 –2

 optical backplanes , 316
 Bakelite , 252
 ball bond , 287
 ball grid array (BGA) , 184 , 260f ,

 294 , 303 , 304 , 305
 ballistic transistors , 330
 bankers rounding see round-half-

even algorithm
 Bardeen, John , 39
 bare die , 286 , 288

 encapsulation, in plastic , 290 , 291
 barrier layer , 181
 base , 39
 base-2 (binary) , 78–9
 base-5 (quinary) , 77 , 78
 base-8 (octal) , 80–1
 base-10 (decimal) , 70 –1
 base-12 (duo-decimal) , 71 –3
 base-16 (hexadecimal) , 80–1

Index 527

 base-20 (vigesimal) , 76
 base-60 (sexagesimal) , 73 – 4
 basic cell , 236 , 237 , 238
 beauty (quarks) , 11 f
 Bednorz, Georg , 336
 BEDO (Burst EDO) , 208
 behavioral, in level of abstraction ,

 354
 Bell Laboratories , 36 , 39 , 41
 Berry, Arthur , 251
 BGA (Ball Grid Array) , 184 , 294
 BiCMOS (Bipolar CMOS) , 187
 bidirectional data , 194 , 200
 bigit , 79
 billion , 31 f
 binary arithmetic

 base-2 (binary) , 78 – 9 , 87
 division , 98
 multiplication , 97 – 8
 nines ’ and ten’s complements ,

 89 – 90
 signed binary numbers , 94 – 5

 addition , 95 – 6
 subtraction , 96 – 7

 sign-magnitude binary numbers ,
 93

 unsigned binary numbers , 87 – 8
 addition , 88 – 9
 subtraction , 91 – 3

 binary encoding , 155
 binary-to-gray converter , 395 – 6
 binary versus gray codes , 399
binit , 79
 biological catalysts , 337 , 337 f
 Bipolar CMOS (BiCMOS) , 187
 bipolar junction transistors (BJTs) ,

 39 – 41 , 187 , 429
 bipolar transistor , 39 , 40 , 45
 bi-quinary system , 69
 BIST (Built-In Self-Test) , 375 , 419 –

20 , 419 f
 bits , 79

 bit 0 , 87
 bit 7 , 87
 and bytes , 197

 BJTs (bipolar junction transistors) ,
 39 – 41 , 187 , 429

 black box , 112 f , 113 , 114
 blind vias , 266 , 267
 “ blowing the fuses ” / “ burning the

device ” , 215
 Bluespec SystemVerilog (BSV) , 357
 bobble , 51 f , 58
 bones with notches , 67 – 8

 BOOL logic systhesis , 157 f
 Boole, George , 99 , 100
 Boolean algebra , 85 , 99

 associative rules , 104
 canonical forms , 114
 commutative rules , 104
 complementary rules , 102 , 103
 conundrum , 114 – 15
 DeMorgan transformations , 106 –

 7 , 109 – 12
 fi rst distributive rule , 105 , 106
 idempotent rules , 102 , 103
 involution rule , 103
 logic 0/logic 1, combining single

variable with , 102
 maxterms , 112
 minterms , 112
 precedence of operators , 105
 primitive logic functions , 100 – 1
 product-of-sums form , 112 – 13 ,

114
 second distributive rule , 105 – 6 ,

107
 simplifi cation rules , 106 , 108
 sum-of-products form , 112 – 13 ,

114
 boot-strapping , 195
 boric-acid glass , 320 f
 boron atoms (B) , 36 , 37 , 428
 boron-doped silicon , 36
 borrow operations , 89 , 90 , 90 f
 bottom (quarks) , 11 f
 boundary scan , 375
 Brattain, Walter , 39
 braze , 302
 BREO (Bit RE-Orderer) , 310
 brick

 by brick , 149
 experiments with , 6 – 9

 BSHF (Barrel SHiFter) , 310
 BSV (Bluespec SystemVerilog) , 357
 bubble , 51 f
 Buckministerfullerine , 328 , 328f
 buckyballs , 328
 BUF gate/function , 51 – 2 , 58

 transistor implementation , 59 – 60
 buildup technology , 270
 Built-In Self-Test (BIST) , 375 , 419 –

20 , 419 f
 bulk storage , 194
 Bulwer-Lytton, Edward George , 3
Bulwer-Lytton fi ction contest (2008) ,

 9 s
 bump grid array see ball grid array

 bumping, silicon , 181
 buried vias , 266 , 267
 Burst EDO (BEDO) , 208
 byte , 79 , 197

 C
 C � � , 354
 C.A. Swanson company , 39f
 CAD (Computer-Aided Design) ,

 235 , 246 , 346 , 346f , 346 fp
 CAE (Computer-Aided Engineering) ,

 246 , 346 – 7 , 347 fp
 Calma , 346
 canonical forms , 114
 capacitance , 21 – 3
 capacitors , 21 – 3 , 28

 creation, in thick-fi lm hybrids ,
 282

 carbon atom , 15 f
Carbon Nanotube FET (CNFET) , 329
 carborundum , 45
 Carroll, Lewis , 117 – 18
 catalysts, biological , 337f
 cathode ray tube (CRT) , 329
 cavities, in multichip modules , 301 ,

302
 CBRAMs (Conductive-Bridging

RAMs) , 211 – 12
 cell library , 238
 cells , 195

 basic cells , 236 , 237 , 238
 input/output cells , 245 – 6

 Celts , 76
 Central Processing Unit (CPU) , 193 ,

 194
 ceramics

 cap hybrid package , 291
 cofi red ceramics , 298 – 305
 handgun , 277 f
 hybrid substrates , 277 , 277 f , 298
 low-fi red cofi red , 301

 channel , 42 , 179 , 237 , 433
 channeled gate arrays , 237
 channel-less gate array , 237 , 238
 Charles Ducas , 251
 Charles Lutwidge Dodgson , 117 – 18
 charm (quarks) , 11 f
 chawmp , 79f
 cheap-and-cheerful process , 182
 checksum , 416
 chemically amplifi ed resist , 326 f
 Chemical Mechanical Polishing

(CMP) , 180 , 369

Index528

 Chemical Vapor Deposition (CVD) ,
 326 –7 , 331 –2

 Chemical Vapor Infi ltration (CVI) ,
 332

 chevrons , 139
 Chip-On-Board (COB) , 273–4 , 295
 Chip-On-Flex (COF) , 274
 Chip-Scale Package (CSP)

technology , 185 , 294–5
 chopping see truncation algorithm
 Chua, Leon O. , 28
 Churchill, Winston , 342
 circuit diagrams , 345
 Claude Elwood Shannon , 100
 clepsydra , 72 , 72f
 clock input , 142 , 142f
 cloud of electrons , 11
 Cluster , 312
 CMOS (Complementary Metal-

Oxide Semiconductor) , 57 ,
 57 f , 187

 CMP (Chemical Mechanical
Polishing) , 180 , 369

 CNFET (Carbon Nanotube FET) ,
 329

 COB (Chip-On-Board) , 273–4 , 295
 codes

 gray codes , 118 , 147 , 158 , 393
 Co-Design Automation , 357
 coeffi cient of thermal expansion ,

 277 , 278
 cofi red ceramics , 298

 assembly and packaging , 301
 Ball Grid Arrays (BGAs) , 302 –3 ,

 304
 Column Grid Arrays (CGAs) , 303 ,

 304
 die, populating , 304 –5
 fuzz-buttons , 304
 low-fi red cofi red processes , 301
 pin grid arrays , 302 , 303

 coin-operated machine , 151 , 158 ,
 159

 collector , 39
 Column Grid Arrays (CGAs) , 303 ,

 304
 combinational

 logic , 147 , 219
 versus sequential functions , 132

 combinatorial see combinational
 commutative rules , 104
 Complementary Metal-Oxide

Semiconductor (CMOS) , 57 ,
 57 f , 187

 complementary outputs , 132
 complementary rules , 102 , 103
 complement

 nines ’ complement , 89–90 , 91
 ones ’ complement , 91
 ten’s complement , 89–90
 two’s complement , 91 –2

 complex functions
 brick by brick , 149
 combinational versus sequential

functions , 132
 counters , 146–7
 decoders , 129–30
 D-type fl ip-fl op , 139–41

 positive-edge triggered
implementation , 142

 D-type latches , 138–9
equality comparators , 126–7
 JK and T fl ip-fl ops , 143
 logic gates , 125
 multiplexers , 127–9
 Reset-Set latch (RS latch)

 NAND-based implementation ,
 137 –8

 NOR implementation , 132–7
 scalar versus vector notation ,

 125 –6
 setup and hold times , 148–9
 shift registers , 144–6
 tri-state functions , 130 –2

 Complex PLDs (CPLDs) , 224–7
 component-level netlist , 351
 compute-class elements , 310 –11
 Computer-Aided Design (CAD) ,

 235 , 246 , 346, 346f , 346fp
 Computer-Aided Engineering (CAE) ,

 246 , 346–7 , 347fp
 computer-on-a-chip , 175
 ComputerVision , 346
 conditioning , 163
 conductance , 29–30
 conductive adhesives , 334–5
 Conductive-Bridging RAMs

(CBRAMs) , 211 –12
 conductive ink technology , 272–3
 conductors , 17
 conjunction , 100
 “connect the NOTs ” , 52
 Consumer Electronics Show (CES) ,

 330
 Contexts

 Elements , 311
 continuous current see direct current
 copper , 17 , 301

 core supply voltages , 187
 Count Alessandro Volta , 19f
 counters , 146–7

 setup and hold times , 148–9
 Count Ferdinand von Zeppelin , 41 f
 counting

 in binary , 79
 in decimal , 71
 in duo-decimal , 71 –3
 in hexadecimal , 81
 in octal , 81
 in quinary , 77 , 78

 CPLDs (Complex PLDs) , 224–7
 C programming language , 354
 CPU (Central Processing Unit) , 193 ,

 194
 CRC (Cyclic Redundancy Check)

applications , 416 –17
 creeping errors , 435
 Cro-Magnon , 67f
 Crosspoint Switch (CPS) , 312
 crumb , 79f
 crystals , 11 , 15
 CSP (Chip-Scale Package)

technology , 185 , 294–5
 CSSPs (Customer-Specifi c Standard

Products) , 233
 current , 18–19
 Customer-Specifi c Standard Products

(CSSPs) , 233
 CVI (Chemical Vapor Infi ltration) ,

 332
 Cyclic Redundancy Check (CRC)

applications , 416 –17

 D
 d0 data input 127 , 128
 d1 data input , 127
 D/A (Digital-to-Analog) converter ,

 162 , 164–5
 data , 164f
 data bus , 194
 daughter cards , 271
 Dawon Kahng , 41
 DDR , 210
 DDR2 , 210
 DDR3 , 210
 decimal (base-10) system , 70 –1
 decoders , 129–30
 decryption (LFSR application) ,

 415 –16
 Deep Submicron (DSM) , 148 , 189
 de Forest, Lee , 35

Index 529

 delamination , 269
 DeMorgan, Augustus , 106
 DeMorgan transformations , 106 – 7 ,

109 – 12
 depletion-mode MOSFET , 41 , 41 f ,

 431 – 2
 depletion zones , 428 , 429
 design and verifi cation tools

 design capture , 361
 abstraction, higher levels of ,

 363
 gate-level netlist , 361 – 2
 graphical design entry lives on ,

 363 – 4
 schematic capture , 362 – 3
 transistor-level netlist , 361 – 2

 Design for Manufacturability
(DFT) , 370

 analog synthesis , 371 – 2
 Automatic Test Pattern

Generator (ATPG) , 376
 Built-In Self-Test (BIST) , 375
 Electromagnetic Compliance

(EMC) , 374 – 5
 Electromagnetic Interference

(EMI) , 374 – 5
 fault simulation , 376
 hardware simulation

acceleration and emulation ,
 372 – 3

 JTAG , 375
 mixed-signal simulation , 373
 physical verifi cation , 373 – 4
 power analysis , 374
 RF/microwave design tools , 372
 SCAN , 375
 schematic synthesis , 371
 Signal Integrity (SI) analysis ,

 374
 thermal analysis , 374

 formal verifi cation , 365 – 6
 functional verifi cation

(stimulation) , 364 – 5
 layout (place-and-route) , 367
 logic synthesis , 366 – 7
 parasitic extraction , 367 – 8
 timing analysis , 368

 Static Timing Analysis (STA) ,
 368 – 9

 Statistical Static Timing Analysis
(SSTA) , 369

 weasel words , 361
 design engineer , 204 , 219 , 235 , 240 ,

 246 , 248 , 347 , 367

 “ designer molecules ” , 340
 designers versus engineers , 347
 Design for Manufacturability (DFM) ,

 370
 analog synthesis , 371 – 2
 Automatic Test Pattern Generator

(ATPG) , 376
 Built-In Self-Test (BIST) , 375
 Electromagnetic Compliance

(EMC) , 374 – 5
 Electromagnetic Interference

(EMI) , 374 – 5
 fault simulation , 376
 hardware simulation acceleration

and emulation , 372 – 3
 JTAG , 375
 mixed-signal simulation , 373
 physical verifi cation , 373 – 4
 power analysis , 374
 RF/microwave design tools , 372
 SCAN , 375
 schematic synthesis , 371
 Signal Integrity (SI) analysis , 374
 thermal analysis , 374

 Design Rule Checking (DRC) , 373
 Design Under Test (DUT) , 373
 deuterium , 12
 device geometries , 188 – 90
 DFM see Design for

Manufacturability
 diamond , 15 f , 331 , 331 f

 substrates
 Chemical Vapor Deposition

(CVD) , 331 – 2
 Chemical Vapor Infi ltration

(CVI) , 332
 maverick inventor , 333
 single-crystal diamond,

requirements for , 333 – 4
 ubiquitous laser beams , 332 – 3

 die , 182 , 182 f , 298 – 9 , 298f
 attachment, hybrids , 286 – 7
 populating , 304 – 5
 stacking , 185

 dielectric layer , 272 , 280
 diffusion , 36

 layer , 180
 digital quantity , 4
 Digital Signal Processing , 162 , 165 ,

 166 , 167 – 9
 Digital Signal Processor , 165 , 168 ,

 355
 Digital Signal Programming , 355
 digital simulation , 420 f

 Digital-to-Analog (D/A) converter ,
 162 , 164 – 5

 digital versus analog system see
 analog versus digital system

 diminished radix complement ,
 89 – 90 , 91

 DIMM (Dual In-Line Memory
Module) , 210 –11

 diode , 35 , 428 – 9
 see also semiconductor diodes

 DIP , 183 , 183 f
 direct current (DC) , 28
 Direct Rambus DRAM (DRDRAM) ,

210
 discrete components , 38

 versus Integrated Circuits (IC) ,
 185 – 6

 disjunction , 100
 division in binary , 98
 Dodgson, Charles Lutwidge , 117 – 18
 don’t care states , 123 , 127 , 128 , 158
 dopants , 36
 doping , 36
 Double Data Rate (DDR) , 210
 double plunge cuts , 281 , 282
 double-sided boards , 262 – 4
 double-sided thick-fi lm hybrids , 283
 down (quarks) , 11 f
 dozen , 76
 drafting department , 346 , 346 f
 DRAMs (Dynamic RAMs) , 208 , 242
 DRC (Design Rule Checking) , 373
 DRDRAM (Direct Rambus DRAM) ,

210
 DSM (Deep Submicron) , 148 , 189
 D-type fl ip-fl op , 139 , 238

 positive-edge triggered
implementation , 142

 D-type latches , 138 – 9
 Dual In-Line (DIL) package , 183 ,

 183 f
 Dual In-Line Memory Module

(DIMM) , 210 –11
 dual-port RAM , 200 f
 Ducas, Charles , 251
 Dummer, Geoffrey William Arnold ,

 173
 duo-decimal (base-12) systems ,

71 – 3
 DUT (Design Under Test) , 373
 DVDs , 161 f
 dynamic fl ex , 274
 Dynamic RAMs (DRAMs) , 208
 dynner , 79 f

Index530

 E
 e (verifi cation languages) , 358
 e-beam lithography see electron

beam lithography
 ECA-64 , 312 , 313
 ECC memory (Error-Correcting

Code memory) , 211
 echo , 165
 ECL (Emitter-Coupled Logic) , 187
 EDA (Electronic Design

Automation) , 246
 edge-sensitive , 139
 EDIF (Electronic Design Interchange

Format) , 353
 Edison, Thomas Alva , 35
 Edison Effect , 35
 EDO (Extended Data Out) , 208
 Edward George Bulwer-Lytton , 3s
 EEPROM/E 2 PROM (Electrically-

Erasable Read-Only Memory) ,
207 , 217

 electrical impedance see impedance
 Electrically-Erasable Read-Only

Memory (EEPROM/
E2 PROM) , 207 , 217

 Electrical Rule Checking (ERC) , 373
 electricity , 33
 electric vs. electronic circuit , 47
 electroless plating , 256 , 257
 Electromagnetic Compliance (EMC) ,

 374 –5
 Electromagnetic Interference (EMI) ,

 375
 electromagnetic transistor

fabrication , 324–5
 electromechanical relay , 33–4
 electromigration , 190 , 325
 electron(s) , 11 , 12

 shells , 13
 Electron Beam Epitaxy (EBE) , 327f
 electron beam lithography , 191
 Electronic Design Automation

(EDA) , 246 , 347
 origins of , 345–6

 Computer-Aided design (CAD) ,
 346 , 346f , 346fp

 Computer-Aided Engineering
(CAE) , 346–7 , 347fp

 designers versus engineers , 347
 Electronic Numerical Integrator And

Calculator (ENIAC) , 35
 electronics , 33
 Electronic System Level (ESL) ,

 359 –60

 electronic vs. electric circuit , 47
 Elemental Computing Arrays

(ECAs) , 310 –14
 Elements , 310
 EMACS , 363
 embedded systems , 348–9
 EMC (Electromagnetic Compliance) ,

 375
 EMI (Electromagnetic Interference) ,

 374 –5
 emitter , 39
 Emitter-Coupled Logic (ECL) , 187
 Emory University , 342
 emulsion-coated fi ne steel mesh ,

 279
 enable , 130

 input , 138
 encapsulation , 273
 encryption (LFSR application) ,

 415 –16
 end-around-carry operation , 90
 engineers versus designers , 347
 enhancement-mode MOSFETS ,

 432 –3
 ENIAC (Electronic Numerical

Integrator And Calculator) ,
 35

 enzymes , 337f
 EPROM (Erasable Programmable

Read-Only Memory) , 205 –7 ,
 217

 equality comparators , 126–7
 equivalency

 checker , 365 , 367
 checking , 365

 equivalent gate , 188
 Erasable Programmable Read-Only

Memory (EPROM) , 205 –7 ,
 217

 ERC (Electrical Rule Checking) , 373
 Ernest Nagy , 333
 Ernest Nagy de Nagybaczon , 333
 Ernst Werner von Siemens , 30
 Error-Correcting Code memory

(ECC memory) , 211
 ESL (Electronic System Level) ,

 359 –60
 etching , 178 , 254
 Euler, Leonhard , 117
 eutectic bond , 287, 287f
 eutectic solder , 304
 EUV (Extreme Ultraviolet) , 191
 exa , 31
 exclusive-OR , 53

 exponent , 83
 Extended Data Out (EDO) , 208
 Extreme Data Rate (XDR) DRAM ,

210
 ExtremeUltraviolet (EUV) , 191

 F
 fab-less semiconductor company ,

 247
 fabrication process , 175–80 , 181 ,

 334
 “ fabric” , 229 , 229f
 fabs , 247
 Faggin, Federico , 175
 Fairchild and Texas Instruments , 174
 Fairchild Semiconductor , 174 , 175 ,

 235 , 236
 falling-edge , 139
 FALSE and TRUE functions

 versus OPEN and CLOSED
functions , 50 –1

 families , 187
 fan-in via , 265f
 fan-out via , 265
 Faraday, Michael , 22f
 farads , 22 , 22f
 Fast Page Mode (FPM) , 208
 fault simulation , 376
 Federico Faggin , 175
 feedback , 133
 femto , 30 , 31
 Ferroelectric RAM (FRAM) , 211 –12
 FETs (Field-Effect Transistors) , 352 ,

 432 , 433
 Feynman, Richard , 337
 fi ber-optic interconnect , 314 –16
 fi eld-effect , 42 , 431
 Field-Effect Transistors (FETs) , 352 ,

 432 , 433
 Field Programmable Gate Arrays

(FPGAs) , 168 , 169 , 227–9 ,
 308 , 372

 architectures , 229–32
confi guration technologies , 232–3

 FIFO (First-In First-Out)
applications , 397 , 411 –14

 fi ngers , 67
 Finite State Machine (FSM) see state

machines
 fi rmware , 308
 fi rst distributive rule , 105 , 106
 First-In First-Out (FIFO)

applications , 397 , 411 –14

Index 531

 fi ve-quanta digital system , 9
 FLASH , 195 f , 207 – 8 , 217 , 232
 Fleming, Sir John Ambrose , 35
 fl ex , 274
 fl exible printed circuits (FPCs) ,

 274 – 6
 dynamic fl ex , 274
 rigid fl ex , 274 , 275
 static fl ex , 274 , 275

 fl ipped-chip technique , 184 , 273 ,
 289 – 90 , 318 , 334

 versus wire bonds , 293 – 4
 fl ipped TAB , 290
 fl oorplan , 366
 footprint , 259 , 289
 formal verifi cation , 359 , 365– 6
 foundry , 244 , 247
 four-valence semiconductor see

 silicon
 FPCs see fl exible printed circuits
 FPGAs (Field Programmable Gate

Arrays) , 168 , 169 , 227 – 9 ,
 308 , 372

 architectures , 229 – 32
 confi guration technologies , 232 – 3

 FPM (Fast Page Mode) , 208
 FR4 , 252
 FRAM (Ferroelectric RAM) , 211 – 12
 free-space interconnect , 317 , 318
 FSM (Finite State Machine) see state

machines
 full custom ASICs , 236 , 249
 functional, in level of abstraction ,

353 – 4 , 356
 functional tester , 417 , 418
 functional verifi cation (stimulation) ,

 364 – 5
fusible-link technologies , 205 , 214 – 15
 fuzz-buttons , 304

 G
 GaAs (gallium arsenide) , 44 – 5 , 46 ,

 187 , 325 , 327
 GAL (Generic Array Logic) devices ,

 224
 gallium (Ga) , 45
 gallium arsenide (GaAs) , 44 – 5 , 46 ,

 187 , 325 , 327
 gallium phosphide , 46
 gate arrays , 236 – 8 , 248

 design fl ow , 238 – 40
 gate-level netlist , 238 , 351 , 353 ,

 361 – 2 , 371 , 372

 gates versus functions , 56
 Gaussian implementations , 439
 gawble , 79f
 GDSII , 370 , 371 , 373 – 4
 Generic Array Logic (GAL) devices ,

 224
 Geoffrey William Arnold Dummer ,

 173
 Georg Bednorz , 336
 George Boole , 99 , 100
 George Thomson , 21
 Georgia Institute of Technology , 342
 Georg Simon Ohm , 19 f
 germanium (Ge) , 15 , 36 , 326 , 327
 giga , 30 , 31 , 196 – 7
 “ gizmo ” , 151 , 152 , 159
 glass substrate , 283 , 298
 glue languages , 355
 glue logic , 248
GPU (Graphics Processing Unit) , 167
 graphical design entry , 363 – 4
 Graphics Processing Unit (GPU) ,

 167
 gray code counters , 397 , 398 , 399 ,

 404
gray codes , 118 , 393 , 393 f

 versus binary codes , 399
 binary-to-gray , 395 – 6
 generation of , 394 – 5 , 397 – 8
 gray code counters , 397
 gray-to-binary , 395 – 6
 sub-2 n sequences generation , 398

 adjacent pairs, throwing ,
 399 – 400

 with consecutive values , 402 – 6
 mirroring process , 400 – 1
 pruning the ends , 401 – 2

 gray-to-binary converter , 395 – 6
 gross , 76
 ground planes , 267 – 70
 guard conditions , 153
 guided probe analysis , 418
 guided-wave interconnect , 318 – 19 ,

 320
 gumbo, seafood , 459 – 63

 H
 Hanson, Albert , 251
 hard macros , 233 , 239 , 240
 hardware , 307
 Hardware Description Languages

(HDLs) , 350 , 351 , 355 – 8 ,
 363 , 365

 hardware design versus
programming languages ,
 349 – 50

 hardware simulation Acceleration
and emulation , 372 – 3

 Hardware Verifi cation Languages
(HVLs) , 358

 Harvard Mark 1 , 34
 HDI (high density interconnect) ,

 270 – 1
 HDLs (Hardware Description

Languages) , 350 , 351 , 355 – 8 ,
 363 , 365

 Heike Kamerlingh Onnes , 336
 Heiman, Fredric , 41
 helium atom , 11 , 12 , 14 , 14 f
 Henry, Joseph , 23 f
 herding wild electrons , 33
 hermetically sealed hybrid package ,

 291 , 292
 heterojunction transistors , 325 – 7 ,

 328
 Hewlett Packard (HP) , 28
 hexadecimal (base-16) system , 80 – 1
 high density interconnect (HDI) ,

 270 – 1
high energy injection see hot electron

injection
 high-impedance , 131
 high-speed design , 372
 High-Temperature Cofi red Ceramics

(HTCC) , 301
 Hindus , 70
 H.J. Round , 45
 Hoerni, Jean , 41 , 174
 Hoff, Ted , 175
 Hofstein, Steven , 41
 holes , 37

 versus vias , 264 – 5
 homojunction , 326
 hot electron injection , 205
 HTCC (High-Temperature Cofi red

Ceramics) , 301
 HVLs (Hardware Verifi cation

Languages) , 358
 hybrids , 293

 FPGAs , 308 – 9
 packaging process , 290 – 2
 substrates , 277 – 8
 thick-fi lm process , 278

 capacitors creation , 282
 double-sided thick-fi lm hybrids ,

 283
 inductors creation , 282 – 3

Index532

hybrids (continued)
 laser trimming , 281 –2
 resistors creation , 280–1
 Subtractive Thick Film (STF)

technology , 283
 tracks creation , 279–80

 thin-fi lm hybrids , 283
 advantages, using bare die , 290
 assembly process , 286
 die attachment , 286–7
 fl ipped-chip techniques , 289–90
 laser trimming , 285–6
 Tape Automated Bonding

(TAB) , 288
 wire bonding , 287

 hydrogen atom , 12
 hydrogen bond , 338
 hydrogen molecule , 14

 I
 ICs see integrated circuits
 idempotent rules , 102 , 103
 IDMs (Integrated Device

Manufacturers) , 247
 IGFETs (Insulated Gate Field-Effect

Transistors) , 41 f
 impedance (Z) , 28–9 , 30
 inclusive-OR , 53
 inductance , 23–7
 inductors , 23–7 , 28

 creation , 282–3
 inert gas see noble gas
 input/output cells and pads , 245–6
 Insulated Gate Field-Effect

Transistors (IGFETs) , 41 f
 insulators , 18 , 36 , 37 , 336
 In-System Programmable (ISP)

devices , 207 , 232
 integrated circuits (ICs) , 173fp

 ASICs , 235
 Complementary Metal-Oxide

Semiconductor (CMOS) , 187
 core supply voltages , 187
 device geometries , 188–90
 versus discrete components ,

 185 –6
 Emitter-Coupled Logic (ECL) ,

187
 equivalent gates , 188
 fabrication process , 175–80
 Moore’s law , 192
 optical lithography , 190 –1
 packaging process , 181 –5

 transistors , 192
 Transistor-Transistor Logic (TTL) ,

 187
 types of , 186

 Integrated Device Manufacturers
(IDMs) , 247

 Intel , 175 , 192 , 205
 intellectual property (IP) , 240–1
 intense electromagnetic fi eld , 25
 International System of Units , 21 ,

 196 f
 interposer , 294–5
 INV function , 51 f
 involution rule , 103
 I/O cells and pads , 245–6
 IP (intellectual property) , 240–1
 isotopes , 12
 ISP (In-System Programmable)

devices , 207 , 232

 J
 Jack St. Clair Kilby , 173 , 174
 James Watt , 19f
 Japan Electronic Industry

Development Association
(JEIDA) , 356

 Java Math Library , 438
Java ™ , 354
 Jean Hoerni , 41 , 174
 JEIDA (Japan Electronic Industry

Development Association) ,
 356

 jelly bean devices , 174 , 248
 JFETs (Junction Field-Effect

Transistors) , 41 f , 429–31
 JK and T fl ip-fl ops , 143
 John Bardeen , 39
 John Scott Russell , 317
 John Venn , 117
 John von Neumann , 168f
 John Wilder Tukey , 78
 Joint Test Action Group (JTAG) , 375 ,

 375 f
 Joseph Henry , 23f
 JTAG (Joint Test Action Group) , 375 ,

 375 f
 JUGFETs see Junction Field-Effect

Transistors
 Julius Edgar Lilienfi eld , 41 , 431
 jumpers , 262 , 263
 Junction Field-Effect Transistors

(JFETs) , 41 f , 429–31
 junction region , 428f

 K
 Kahng, Dawon , 41
 Karnaugh, Maurice , 118 , 119
 Karnaugh Map , 389 , 393 , 393f

 Carroll, Lewis , 117 –18
 incompletely specifi ed functions ,

 122 –3
 Karnaugh, Maurice , 118 , 119
 Marquand, Allan , 117
 minimization , 119 –20 , 128 , 128f
 minterms, grouping , 120 –2
 Tree of Porphyry , 117
 using 0s versus 1s , 123–4
 Venn, John , 117

 Kelvin , 336 , 336f
 Kfi r, Alon , 157f
 Kilby, Jack St. Clair , 173 , 174
 kilo , 30 , 31 , 196–7
 kipper , 306 f

 L
 laminates , 252 , 293 , 297
 land grid array see ball grid array
 Large Scale Integration (LSI) , 188
 laser trimming

 thick-fi lm hybrids , 281 –2
 thin-fi lm hybrids , 285–6

 latch-up conditions , 159
 lateral thermal conductivity , 277 ,

 278
 Lattice Semiconductor Corporation ,

 224
 layout (place-and-route) , 367

 designer , 246 , 347
 Layout Versus Schematic (LVS) ,

 373 –4
 LCD (Liquid Crystal Display) , 47 ,

 329
 LDRs (light-dependent resistors) , 20 f
 Lead Through Hole (LTH) , 184 , 259
 Least-Signifi cant Bit (LSB) , 87 , 414
 LEDs (light-emitting diodes) , 45–6 ,

 45 fp
 Lee de Forest , 35
 Leonhard Euler , 117
 Leon O. Chua , 28
 level-sensitive , 139
 Lewis Carroll , 117 –18
 LFSRs see Linear Feedback Shift

Registers
 light-dependent resistors (LDRs) , 20 f
 light-emitting diodes (LEDs) , 45–6 ,

 45 fp

Index 533

 Lilienfi eld, Julius Edgar , 41 , 431
 Linear Feedback Shift Registers

(LFSRs) , 147 , 309 , 407 fp , 422
 accessing previous value , 415
 Built-In Self-Test (BIST)

applications , 419 – 20 , 419 f
 Cyclic Redundancy Check (CRC)

applications , 416 – 17
 data compression applications ,

 417 – 18
 decryption application , 415 – 16
 encryption application , 415 – 16
 First-In First-Out (FIFO)

applications , 411 – 14
 many-to-one implementations ,

 407 – 9
one-to-many implementations , 410
 pseudo-random number

applications , 420 – 1
 seeding , 410 –11
 sequence through 2 n values,

modifi ed to , 414 – 15
 tapes for , 409

 Liquid Crystal Display (LCD) , 47 ,
 329

 literal , 156 , 221
 logic 0/logic 1, combining single

variable with , 102
 logical addition , 221
 logical/arithmetic operations, of

digital function , 383
 logical multiplication , 221
 logic functions , 56 , 100 – 1
 logic gates , 56 , 125
 logic simulator , 420 f , 346
 logic synthesis , 366 – 7
 Look-Up Tables (LUTs) , 226 , 230 ,

 231 , 234
 Losov, O.V. , 45
 loudspeaker , 164
 low-fi red cofi red processes , 301
 Low-Temperature Cofi red Ceramics

(LTCC) , 301
 LSB (Least-Signifi cant Bit) , 87 , 414
 L-shaped cuts , 281 , 282
 LSI (Large Scale Integration) , 188
 LTCC (Low-Temperature Cofi red

Ceramics) , 301
 LTH (Lead Through Hole) , 184
 lucky numbers , 84
 LUTs (Look-Up Tables) , 226 , 230 ,

 231 , 234
 LVS (Layout Versus Schematic) ,

 373 – 4

 M
 MAC (Multiply-And-Accumulate)

units , 168
 macro-cells see hard macros
 macro-functions see soft macros
 macros

 hard macros , 239
 soft macros , 239
 in software terms , 239 f

 Magnetic Tunnel Junction (MTJ) , 211
 Magnetoresistive Random Access

Memory (MRAM) , 211
 mapping

 hexadecimal to binary , 81
 octal to binary , 81
 physical to logical mapping

 NMOS logic , 384 – 5
 PMOS logic , 386 – 7

 Marquand, Allan , 117
 Martin M. Atalla , 41
 mask-programmed ROMs , 202 – 3
 master-slave relationship , 142
 MATLAB® , 438
 Matrix , 312
 Maurice Karnaugh , 118 , 119
 maverick inventor , 333
 maxterms and minterms , 112
 Mayans , 76
 Mazor, Stan , 175
 MBE (Molecular Beam Epitaxy) ,

 326 , 327 f
 McKinley microprocessor , 192
 M-Code , 354 , 354 f
 Mealy machine , 154 , 155
 Medium Scale Integration (MSI) ,

 188
 mega , 30 , 31 , 196 – 7
 MegaPAL , 225
 memory cells , 195 – 6
 memory elements , 132
 memory ICs , 193

arrays , 195 – 6
 bits and bytes , 197
 CBRAMs , 211 – 12
 cells , 195 – 6
 DDR , 210
 DDR2 , 210
 DDR3 , 210
 DIMMs , 210 –11
 DRAMs , 208
ECC memory , 211
 EPROMs , 205 – 7
 EEPROMs/E 2 PROMs , 207

 FLASH , 207 – 8
 FRAMs , 211 – 12
 giga , 196 – 7
 kilo , 196 – 7
 mask-programmed ROMs ,

202 – 3
 mega , 196 – 7
 MRAMs , 211
 nvRAMs , 211 – 12
 PRAMs , 211 – 12
 PROM , 203 – 4
 QDR , 210
 RAMBUS , 210
 Random-Access Memories

(RAMs) , 193 – 5
 with data in and data out

busses , 199 – 200
 with single bidirectional bus ,

 200 – 1
 Read-Only Memory (ROM) ,

 193 – 5
 control decoding , 197 – 8

 RIMMs , 210 –11
 RRAMS , 211 – 12
 SDRAMs , 208 – 10
 SIMMs , 210 –11
 SONOS , 211 – 12
 SRAMs , 208
 tera , 196 – 7
 width and depth, increasing ,

201 – 2
 word addressing in , 196
 words , 195 – 6

 memory module , 210
 memory resistor see memristor
MEMory Unit (MEMU) , 311 , 312
 memristance , 28
 memristor , 28
 MEMS (microelectromechanical

systems) , 341 , 342
 MEMU (MEMory Unit) , 311 , 312
 mesa process , 40
 MESFETS (Metal-Epitaxial

Semiconductor Field-Effect
Transistors) , 41 , 41 f , 429 ,
 430 – 1

Metal-Epitaxial Semiconductor Field-
Effect Transistors (MESFETS) ,
41 , 41 f , 429 , 430 – 1

 metallization layers , 180
 metal-oxide , 42
 metal-oxide semiconductor fi eld-

effect transistors (MOSFETs) ,
41 – 3 , 41 fp , 57 , 187

Index534

 metal substrates , 298
 metastable condition , 137
 Michael Faraday , 22f
 micro , 31
 microelectromechanical systems

(MEMS) , 341 , 342
 Micromosaic , 174 , 235
 microprocessor (μP) , 175
 microvia technologies , 270 –1
 milli , 20 s , 31
 minimization , 106

 using Karnaugh Maps , 119 –20
 minterms

 grouping , 120 –2
 and maxterms , 112

 mirroring process , 395
 mirror line , 402 , 403
 mixed-signal FPGAs , 233
 mixed-signal simulation , 373
 model checking , 365
 modulus, of the counter , 146
 mohs , 30
 Molecular Beam Epitaxy (MBE) ,

 326 , 327f
 molecules , 11 , 13–15

 combining , 339
 organic , 323

 monolithic integrated circuit , 173
 Moorby, Phil , 356
 Moore machine , 154 , 155
 Moore’s law , 192
 MOSFETs (metal-oxide

semiconductor fi eld-effect
transistors) , 41 –3 , 41 fp , 57 ,
 187

 Most Signifi cant Bit (MSB) , 414 ,
 414 f , 87 , 202

 motherboards , 271 –2
 MRAM (Magnetoresistive Random

Access Memory) , 211
 MSB (Most Signifi cant Bit) , 414 ,

 414 f , 87 , 202
 MSI (Medium Scale Integration) ,

 188
 MTJ (Magnetic Tunnel Junction) , 211
 MULT (MULTiplier) , 310
 multilayer boards , 265–6
 multiplexer (MUX)
 Multiply-And-Accumulate (MAC)

units , 168
 multi-value digital systems , 5–6
 MUX (multiplexer) , 127–9 , 230 ,

 234 , 238
 M üller, Alex , 336

 N
 Nagy, Ernest , 333
 Nakamura, Shuji , 46
 NAND gate/function , 53 , 54–5 , 60 ,

101 , 132 , 389
 transistor implementation , 61

 nano , 31 , 190
 nanobots , 340
 nanophase diamond structures , 333
 nanophase materials , 333
 nanotechnology , 337–41
 nanotubes , 328–30
 NC drilling machine , 257f
 n-channel , 48 , 49
 negative-edge , 139
 negative hold times , 148
 negative ion , 12
 negative logic , 57 , 383
 negative logic convention , 384–5 ,

 385 f
 negative logic implementations , 377 ,

 377 f
 negative numbers, origin of , 74–5
 negative quantity , 94
 negative-resist process , 178 , 254f
 negative setup , 148
 negative signed binary numbers ,

 94 –5
 negative-true see negative logic
 netlists , 347

 component-level netlist , 351
 gate-level netlist , 351
 transistor-level netlist , 350 –1

 neutrons , 11 , 12
 nibble , 79
 nichrome , 283
 nines ’ complement see diminished

radix complement
 NMOS transistor , 42 , 43fp , 57 , 384–5
 noble gas , 14f
 noble metals , 300 f
 nonvolatile RAMs (nvRAMs) , 211 –12
 NOR gate/function , 53 , 54fp , 54–5 ,

61 –2 , 131 , 132 , 133 , 389
 notches on bones , 67–8
 NOT gate/function , 55 , 58 , 101 , 389

 and BUF function , 51 –2
 in signal inverting , 455
 transistor implementation , 59

 Noyce, Robert , 41 , 174
 NPN , 39 , 39f
 N-type diffusions region , 179 , 180
 N-type silicon , 36 , 37 , 38 , 427 , 428 ,

 429 , 430 , 431 , 432

 nucleus , 11
 number systems , 67

 abacus , 69
 Acanthostega , 82
 binary (base-2) , 78–9
 bones with notches , 67–8
 decimal (base-10) , 70 –1
 duo-decimal (base-12) , 71 –3
 fi ngers, toes, and pebbles , 67
 hexadecimal (base-16) , 80–1
 lucky and unlucky numbers , 84
 octal (base-8) , 80–1
 powers, use of , 82–4
 quinary (base-5) , 77 , 78
 Roman Numerals , 69–70
 sexagesimal (base-60) , 73–4
 tally sticks , 68
 tertiary logic , 85
 tetrapods , 82
 time-travelers, jobs abound for ,

 76 –7
 vigesimal (base-20) , 76
 zero and negative numbers , 74–5

Nutmeg , 352
 nvRAMs (Nonvolatile RAMs) ,

211 –12
 nybble , 79

 O
 octal (base-8) system , 80–1
 Ohm, Georg Simon , 19f
 Ohms , 19 , 19f
 Ohm’s law , 20
 Ohm’s triangle , 20
 OLEDs (organic LEDs) , 46–7
 omega (Ω) , 20 s , 30 , 30 f
 OMEMS (optical

microelectromechanical
systems) , 341 , 342

 one-hot encoding , 158
 ones ’ complement , 91
 One-Time Programmable (OTP)

devices , 204 , 215 , 217
 Onnes, Heike Kamerlingh , 336
 OPC (Optical Proximity Correction) ,

 191 , 370
 OPEN and CLOSED functions

 FALSE and TRUE functions , 50 –1
 OpenVera Assertions (OVA) , 359
 OpenVera ™ , 359
 Open Verifi cation Library (OVL) ,

 359
 Operating System (OS) , 195

Index 535

 optical backplanes , 316
 optical interconnect

 fi ber-optic interconnect , 314 – 16
 free-space interconnect , 317 , 318
 guided-wave interconnect , 318 –

 19 , 320
 optical lithography , 175 , 190 – 1
 optical memories , 320 – 1
 optical microelectromechanical

systems (OMEMS) , 341 , 342
 Optical Proximity Correction (OPC) ,

 191 , 370
 organic LEDs (OLEDs) , 46 – 7
 organic substrates , 252
 organic synthetic metals , 336
 OR gate/function

 pass-transistor implementation ,
 424

 OR gates/function , 49 , 50 , 52 – 3 , 56 ,
61 – 2 , 100 – 1 , 110 , 125 , 131 ,
 132 , 389 , 390 , 413 , 424

 OS (Operating System) , 195
 OTP (One-Time Programmable)

devices , 204 , 215 , 217
 Ouroboros , 407 , 407 f
 OVA (OpenVera Assertions) , 359
 overglassing , 181
 OVL (Open Verifi cation Library) ,

 359
 O.V. Losov , 45
 oxygen atom , 14

 P
 Package-in-Package (PiP) , 297
 Package-on-Package (PoP) , 297
 packaging process , 181 – 5

 hybrids , 290 – 2
 padcap , 270
 Pad Grid Arrays (PGAs) , 260 f , 302
 pads , 181 , 257
 pad-stack , 269 f
 PAL (Programmable Array Logic) ,

 223 , 223 f , 224
 Parallel-In-Serial-Out (PISO) , 146
 parasitic extraction , 367 – 8
 partial product , 98
 passivation layer , 181
 passive 12 electronic components , 28
 passive trimming , 281
 passive vs. active devices , 47
 pass-transistor logic

implementation , 65 , 423 – 6
 AND gate , 423

 D-type latch , 425
 OR gate , 424
 XNOR gate , 425
 XOR gate , 424

 Paul Clifford , 3 s
 p-channel , 48 , 49
 pebbles , 67
 Perl, scripting language , 355
 peta , 31
 PGAs (Pad Grid Arrays) , 260 f , 302
 Phase-Change Memory (PCM/

PRAM/PCRAM) , 211 – 12
 Phase Shift Mask (PSM) , 191 , 370
 PHB (photochemical hole-burning) ,

 320 – 1
 Phil Moorby , 356
 phosphorus atoms (P) , 36 , 37
 phosphorus-doped silicon , 36
 photochemical hole-burning (PHB) ,

 320 – 1
 photo-imagable polyimide

interconnect , 319 , 320
 photo-mask , 175
 pick-and-place machine , 261
 pico , 31
 pin grid arrays , 302 , 303
 PiP (Package-in-Package) , 297
 PISO (Parallel-In-Serial-Out) , 146
 PISO (Parallel-In-Serial-Out) , 146
 place-and-route tools , 239
 place engine/placer , 238
 place-value number systems , 69 , 70
 planar process , 41 , 174
 PLAs (Programmable Logic Arrays) ,

 221 – 3
 plasma , 326f
 plated through-hole (PTH) , 259 ,

 265 , 269 , 272
 plating (in America) , 257
 playte , 79 f
 PLDs (Programmable Logic

Devices) , 217
 plunge cuts , 281 , 282
 PMOS transistor , 42 , 43 fp , 57 ,

 386 – 7
 P-N junctions , 38 , 46 , 427 – 9
 PNP , 39 , 39f
 polycrystalline silicon , 42 , 179 , 431
 polysilicon , 216

 layers , 180
 PoP (Package-on-Package) , 297
 populating circuit boards , 259
 positive-edge , 139 , 142 , 144 , 147
 positive ion , 12

 positive logic convention , 57 , 383 ,
 384 , 384 f

 positive-resist process , 178 , 254
 positive signed binary numbers ,

 94 – 5
 positive versus negative logic , 383

 NMOS logic , 384 – 5
 PMOS logic , 386 – 7

 potential links , 213
 potentiometers , 20 f
power , 19

 and ground planes , 267 – 70
 power analysis , 374
 power planes , 267 – 70
 powers, representing numbers using ,

 82 – 4
 Practical Extraction and Report

Language , 355
 precedence of operators , 105
 prepreg , 266
 primitive gates , 56
 Primitive Logic Functions , 49 , 55 – 6 ,

 100 – 1
 AND, OR, and XOR functions ,

 52 – 3
 AND and OR functions

 switch representations , 49 – 50
 BUF and NOT functions , 51 – 2
 “connect the NOTs ” , 52
FALSE and TRUE versus OPEN

and CLOSED , 50 – 1
 NAND, NOR, and XNOR

functions , 53 – 5
 simple functions versus gates , 56

 primitive logic gate , 238
 primitives , 56
 printed circuit boards (PCBs) , 251 ,

 351
 additive process , 255 – 7
 backplanes , 271 – 2
 blind vias , 266 – 7
 buried vias , 266 – 7
 chip-on-board (COB) , 273 – 4
 conductive ink technology , 272 – 3
 double-sided boards , 262 – 4
 fl exible printed circuits (FPCs) ,

 274 – 6
 ground planes , 267 – 70
 high density interconnect (HDI) ,

 270 – 1
 holes versus vias , 264 – 5
 lead through-hole (LTH) , 259
 microvia technologies , 270 – 1
 motherboards , 271 – 2

Index536

printed circuit boards (PCBs)
(continued)

 multilayer boards , 265–6
 power planes , 267–70
 and PWBS , 252
 RoHS and lead-free solder , 252–3
 single-sided boards , 257–9
 subtractive process , 253–5
 surface mount technology (SMT) ,

 260 –2
 through-hole vias , 266–7
wave soldering , 259–60

 printed wire boards (PWBs) , 252
 process node , 189
 product-of-sums forms , 389

 and sum-of-products form ,
112 –13 , 114

 see also canonical forms
 product term , 221

 sharing , 223
 Programmable Array Logic (PAL) ,

 223 , 223f , 224
 programmable ICs

 additional programmable options ,
 224

 antifuse technologies , 215 –17
 Complex PLDs (CPLDs) , 224–7
 Customer-Specifi c Standard

Products (CSSPs) , 233
 E 2 PROM technology , 217
 EPROM technology , 217
 Field Programmable Gate Arrays

(FPGAs) , 227–33
 FLASH technology , 217
 fusible-link technologies , 214 –15
 Generic Array Logic (GAL) devices ,

 224
 mixed-signal FPGAs , 233
 Programmable Array Logic (PAL) ,

 223 , 223f , 224
 Programmable Logic Arrays

(PLAs) , 221 –3
 Programmable Logic Devices

(PLDs) , 217
 Programmable Read-Only

Memories (PROMs) , 218 –21
 simple programmable function ,

 213
 SRAM technology , 217

 programmable interconnect matrix ,
 225 , 226

 Programmable Logic Arrays (PLAs) ,
 221 –3

 Programmable Logic Devices
(PLDs) , 217

 programmable multiplexer , 226 , 227
 Programmable Read-Only Memory

(PROM) , 203 –4 , 203 fp ,
 218 –21

 programming languages , 349 ,
354–5

 “ programming the device ” , 215
 programming versus hardware

design languages , 349–50
 PROM (Programmable Read-Only

Memory) , 203 –4 , 203 fp ,
 218 –19

 Property Specifi cation Language
(PSL) , 359

 proposition , 99 , 100
 protein switches and memories ,

 321 –4
 protons , 11 , 12
 pseudo-random number

applications , 420 –1
 PSL (Property Specifi cation

Language) , 359
 PSM (Phase Shift Mask) , 191 , 370
 PTH (plated through-hole) , 259 ,

 265 , 269 , 272
 P-type diffusions region , 180
 P-type silicon , 36 , 37 , 427 , 428

 mixing , 38
 PWBs (printed wire boards) , 252

 Q
 QDR (Quad Data Rate) , 210
 QFP (quad fl at pack) , 260
 Quad Data Rate (QDR) , 210
 quad fl at pack (QFP) , 260
 quanta , 5
 quantization, of analog signal , 163 ,

 164
 quantization error , 164
 quantization noise , 164
 quantum levels , 13
 quarks , 11 f
 Queen Victoria , 33
 quinary (base-5) system , 77 , 78

 R
 Radio Frequency (RF) , 372
 radix-10 , 70
 radix complement , 89–90
 RAMBUS , 210
 RAMs see Random-Access Memories

 Random-Access Memories (RAMs) ,
 193 –5

 with separate data in and data out
busses , 199–200

 with single bidirectional bus ,
 200 –1

 random rounding see round-random
algorithm

 RCA research laboratory , 41
 RC time constant , 23
 reactance , 28–9 , 30
 Read-Only Memory (ROM) , 193–5

 control decoding , 197–8
 Read-Write Memory (RWM) , 193 ,

 193 f
 read ~write , 200
 real estate , 262
 reconfi gurable computing , 307 –10
 redundant variables , 391 , 391 f
 Reed-M üller implementation

 2-input function for , 389
 3-input function for , 390
 4-input function for , 390

 Reed-M üller logic , 389–92
 refractory metals , 301 f
 refreshing , 208
 register , 139
 Register Transfer Level (RTL) , 353 ,

 360 , 363 , 363f , 366 , 370
 reset condition , 134
 reset inputs , 132 , 133 , 134 , 135 , 136
 Reset-Set latch (RS latch)

 NAND-based implementation ,
 137 –8

 NOR implementation , 132–7
 resistance (R) , 18–19 , 29

 and resistors , 19–21
 Resistive Random Access Memory

(RRAM) , 211 –12
 resistor-capacitor-switch circuit , 23

 voltage and current characteristics ,
 24

 resistor-inductor-switch circuit , 26
 voltage and current characteristics ,

 26
 resistor-NMOS transistor circuit , 44
 resistors , 28

 and resistance , 19–21
 resistors creation , 280–1

 thick-fi lm hybrids , 280–1
 resistor-switch circuit , 43
 Resolution Enhancement Techniques

(RET) , 191 , 370
 Restriction of Hazardous Substances

Directive (RoHS)

Index 537

 results gatherer , 419
 RET (Resolution Enhancement

Techniques) , 370
 reverb , 165
 RF (Radio Frequency) , 372
 RF/microwave design tools , 372
 Rhodopsin , 324
 Richard Feynman , 337
 rigid fl ex , 274 , 275
 RIMMs , 210 –11
 rising-edge , 139
 Robert Noyce , 41 , 174
 Robert Sheckley , 342
 RoHS (Restriction of Hazardous

Substances Directive) , 253
 ROM see Read-Only Memory
 Roman numerals , 69 – 70
 Round, H.J. , 45
 round-alternate algorithm , 445
round-away-from-zero algorithm ,

 443 – 4
 round-ceiling algorithm , 436 , 441
 round-down algorithm , 444
 round-fl oor algorithm , 436 , 442
 round-half-down algorithm , 436 ,

 439
 round-half-even algorithm , 437 ,

 439 – 40
 round-half-odd algorithm , 437 ,

 440 – 1
 round-half-up algorithm , 436 ,

 437 – 9 , 448 – 9 , 452
 rounding algorithms , 164
 rounding algorithms , 101 , 435

 round-alternate , 445
 round-away-from-zero , 443 – 4
 round-ceiling , 441
 round-down , 444
 round-fl oor , 442
 round-half-down , 439
 round-half-even , 439 – 40
 round-half-odd , 440 – 1
 round-half-up , 437 – 9
 rounding sign-magnitude binary

values , 445
 round-half-up , 448 – 9
 round-half-up , 452
 rounding signed binary values ,

 449
 truncation , 447 – 8 , 450 – 2

 round-random , 445
 round-toward-nearest , 436
 round-toward-zero , 443
 round-up , 444
 truncation , 444

 round method , 438
 round-random algorithm , 445
 round-toward-nearest algorithm ,

 436 , 437
 round-toward-zero algorithm , 443
 round-up algorithm , 444
 route engine/router , 239
 RRAM (Resistive Random Access

Memory) , 211 – 12
 RS latch

 NAND-based implementation ,
 137 – 8

 NOR-based implementation ,
 132 – 7

 R. Stanley Williams , 28
 RTL (Register Transfer Level) , 353 ,

 360 , 366 , 370
 rubber , 18
 Russell, John Scott , 317
 RWM (Read-Write Memory) , 193 ,

 193 f

 S
 SALU (Super ALU) , 311
 sampling, of analog signal , 163
 scalar entity , 125
 scalar versus vector notation , 125 – 6
 scaling , 326
 SCAN , 375
 scan-in pin , 375
 scan-out pin , 375
 schematic capture , 362 – 3
 schematic synthesis , 371
 score , 76
 scripting languages , 355
 scrubbing , 287
 SDR (Single Data Rate) , 210
 SDRAM (Synchronous DRAM) ,

 208 – 10 , 242
 seafood gumbo , 459 – 63
 sea-of-gates/sea-of-cells , 238
 second distributive rule , 105 – 6 , 107
 seed values

 LFSRs , 410 –11
 “ self-aligning ” , 304
 semiconductor diodes , 37 – 9
 semiconductors , 33 , 36 – 7

 active vs. passive devices , 47
 BJTs , 39 – 41
 depletion-mode MOSFET , 431 – 2
 depletion zones , 428 , 429
 diodes , 428 – 9
 electric vs. electronic circuit , 47
 electromechanical relay , 33 – 4

 enhancement-mode MOSFETS ,
 432 – 3

 gallium arsenide semiconductors ,
 44 – 5

 herding wild electrons , 33
 Junction Field-Effect Transistors

(JFETs) , 429 – 31
 LEDs , 45 – 6
 Metal-Epitaxial Semiconductor

Field-Effect Transistors
(MESFETS) , 429 , 430 – 1

 MOSFETs , 41 – 3
 organic LEDS , 46 – 7
 p-n junctions , 427 – 9
 semiconductor diodes , 37 – 9
 transistor, as switch , 43 – 4
 vacuum tubes , 35

 semiconductor substrates , 298
 semi-custom devices , 240
 sensor , 162
 sequential function , 132
 Serial-In-Parallel-Out (SIPO) , 144
 Serial-In-Serial-Out (SISO) , 146
 set condition , 133 , 134
 set inputs , 132 , 133 , 135 , 136 , 141
 sexagesimal (base-60) numbering

system , 73 – 4
 shadow registers , 415
 Shannon, Claude Elwood , 100
 Sheckley, Robert , 342
 shift-and-add technique , 97 – 8
 shift registers , 144 – 6
 Shockley, William , 39 , 429
 shriek character (“ ! ”) , 380 – 2
 Shuji Nakamura , 46
 siemens (S) , 30
 signaling class elements , 311
 Signal Integrity (SI) analysis , 374
 signal layers , 267
 signature analysis , 418
 signatures , 418
 sign bit , 94
 signed binary numbers , 94 – 5 , 436

 addition , 95 – 6
 subtraction , 96 – 7

 signed binary values, rounding , 449
 round-half-up , 452
 truncation , 450 – 2

 signifi cant variables , 391 , 391 f
 sign-magnitude binary numbers , 93
 sign-magnitude binary values,

rounding , 445
 round-half-up , 448 – 9
 truncation , 447 – 8

 silica waveguides , 318 , 319

Index538

 silicon (Si) , 36 , 44 , 46 , 325 , 326
 silicon atom , 15
 silicon bumping , 181
 silicon chips , 173 , 236
 Silicon-Oxide-Nitride-Oxide-Silicon

(SONOS) , 211 –12
 Silonex , 283
 silver-loaded epoxy , 286
 SIMM (Single In-Line Memory

Module) , 210 –11
 simple functions versus gates , 56
 Simple PLDs (SPLDs) , 224, 225, 226
 simple programmable function , 213
 simplifi cation rules , 106 , 108
 Simulation Program with Integrated

Circuit Emphasis (SPICE) ,
 346 , 346f , 346fp

 simulators , 346
single-crystal diamond, requirements

for , 333–4
 Single Data Rate (SDR) , 210
 Single In-Line Memory Module

(SIMM) , 210 –11
 single-sided boards , 257–9
 sintering , 273
 SIPO (Serial-In-Parallel-Out) , 144
 Sir John Ambrose Fleming , 35
 Sir Joseph Wilson Swan , 35f
 SISO (Serial-In-Serial-Out) , 146
 skin effect , 369
 Small Outline Package (SOP) , 183
 Small Scale Integration (SSI) , 188
 SME (state machine element) , 311
SMT (Surface Mount Technology) , 184
 snoopy , 3
 SoC (System-On-Chip) , 186 , 233 ,

 297
 soft macros , 239
 software , 308
 solder bumping see fl ipped-chip

techniques
 solder grid array see ball grid array
 soldering , 253
 solder mask , 257
 solder mask over bare copper

(SMOBC) , 259
 solders , 252 , 252f
 solid-state electronics , 39
 soliton , 317
 SONOS (Silicon-Oxide-Nitride-

Oxide-Silicon) , 211 –12
 SOP (Small Outline Package) , 183
 SoPC (System-On-A-Programmable-

Chip) , 233

 space charge region , 428f
 SPICE (Simulation Program with

Integrated Circuit Emphasis) ,
 346 , 346f , 346fp , 358

 SPICE Deck , 352
 spicules , 257
 spiral inductor , 282
 SPLDs (Simple PLDs) , 224 , 225 , 226
 square spiral inductor , 282
 SRAF (Sub-Resolution Assist

Features) , 191
 SRAM-based FPGAs , 308
 SRAMs (static RAMs) , 208 , 232 , 242
 SRAM technology , 217
 SSI (Small Scale Integration) , 188
 SSTA (Statistical Static Timing

Analysis) , 369
 STA (Static Timing Analysis) , 368–9
 standard cell devices , 240–1
 standard MOSFET versus EPROM

transistors , 205
 Standard Ultraviolet (UV) , 191
 standard versus assertion-level logic ,

 378
 Stan Mazor , 175
 state assignment , 155–8
 state diagram , 152–3
 state machine element (SME) , 312
 state machines , 151 , 154–5
 statement , 99
 state table , 153–4
 state transitions , 153
 state variables , 154
 static fl ex , 274 , 275
 static formal verifi cation , 366
 static RAMs (SRAMs) , 208
 Static Timing Analysis (STA) , 368–9
 Statistical Static Timing Analysis

(SSTA) , 369
 step-and-repeat process , 176
 step-down transformer , 27
 step-up transformer , 27
Steven Hofstein , 41
 STF (Subtractive Thick Film)

technology , 283
 stochastic rounding see round-

random algorithm
 storage class elements , 311
 strange (quarks) , 11 f
 stretch-resistant socks , 308
structural, in levels of abstraction , 353
 “ Structured ASICs ” , 242–5

 advantages , 244
 designing , 244

 sub-2 n sequences generation , 398
 adjacent pairs, throwing , 399–400
 mirroring method , 400–1
 pruning the ends , 401 –2
 with consecutive values , 402 –6

 subatomic erosion , 190
 sub-board , 266 , 266f
 Sub-Resolution Assist Features

(SRAF) , 191
 substrate(s) , 177 , 252

 hybrid , 277–8
 for System-in-Package , 297–8

 subtraction
 in signed binary numbers , 96–7
 in unsigned binary numbers , 91 –3

 subtractive process , 253–5
 Subtractive Thick Film (STF)

technology , 283
 sum , 88
 Sumerians , 71
 sum-of-products forms , 389

and product-of-sums form , 112 –13 ,
114

 see also canonical forms
 Super-Cluster , 312
 superconductors , 335–7
Superlog , 357
 surface emission displays (SEDs) ,

 329 –30
 surface mount devices (SMDs) , 260
 surface mount technology (SMT) ,

 184 , 260–2
 susceptance (B) , 29–30
 Swan, Sir Joseph Wilson , 35f
 switch-level netlist , 352
 symbolic logic , 100
 Synchronous DRAM (SDRAM) ,

 208 –10 , 242
 Synopsys , 359
 SystemC , 357–8
 System House , 247
 system-in-package (SiP) , 293 , 297 ,

305 –6 , 315 , 318 , 319 , 331
 example, based on cofi red

ceramics , 298–305
 populating , 304 –5
 substrates, positive plethora of ,

 297 –8
 system integration languages , 355
 System-On-A-Programmable-Chip

(SoPC) , 233
 System-On-Chip (SoC) , 186 , 233 ,

297
 SystemVerilog 3.0 , 357

Index 539

 T
 TAB (Tape Automated Bonding) , 288
 tally , 67
 tally sticks , 68
 TALU (Triple ALU) , 311
 Tape Automated Bonding (TAB) , 288
 tayble , 79 f
 tayste , 79 f
 technologies , 187
 technology node , 189
 Ted Hoff , 175
 ten’s complement see radix

complement
 tera , 30 , 31 , 196 – 7
 tertiary (base-3) values , 85
 tertiary logic , 85
 test generator , 419
 tetrapod , 82
 thermal analysis , 374
 thermal relief pads , 269 , 269 f
 thermistors , 20 f
 thick-fi lm hybrids , 278

 capacitors creation , 282
 double-sided thick-fi lm hybrids ,

 283
 inductors creation , 282 – 3
 laser trimming , 281 – 2
 resistors creation , 280 – 1
 Subtractive Thick Film (STF)

technology , 283
 tracks creation , 279 – 80

 thin-fi lm hybrids , 283
 advantages, using bare die , 290
 assembly process , 286
 die attachment , 286 – 7
 fl ipped-chip techniques , 289 – 90
 laser trimming , 285 – 6
 Tape Automated Bonding (TAB) ,

 288
 wire bonding , 287

 Thomas Alva Edison , 35 , 251
 Thomson, George , 21
 three-dimensional silicon crystal ,

15
 through-hole technique , 257 , 259
 through-hole via , 266 , 267
 TI , 236
 time-travelers, jobs abound for , 76 – 7
 timing analysis , 368

 Static Timing Analysis (STA) ,
 368 – 9

 Statistical Static Timing Analysis
(SSTA) , 369

 tinning (in England) , 257

 TLMs (Transaction-Level Models) ,
 358

 toes , 67
 top (quarks) , 11 f
 Toshiba , 330
 tracking layers , 180
 tracks , 179

 creation
 thick-fi lm hybrids , 279 – 80

 Transaction-Level Models (TLMs) ,
 358

 transducer , 162
 transformers , 27
 transistor-and-fusible-link-based

PROM cell , 204
 transistor-level netlist , 350 – 1 , 352 ,

 361 – 2
 transistors , 33 , 39 , 192

 0s and 1s, use of , 57 – 8
 AND gate , 60 , 61
 BUF gate , 58 , 59 – 60
 CMOS , 57
electromagnetic , 324 – 5
 heterojunction , 325 – 8
 for logic gates construction , 57
 NAND gate , 60 , 61
 NMOS , 57
 NOR gates , 61 – 2
 NOT gate , 58 – 9
 OR gates , 61 – 2
 pass-transistor logic , 65
 PMOS , 57
 as switch , 43 – 4
 XNOR gates , 62 – 3
 XOR gates , 62 – 3

 pass-transistor
implementations , 63 – 5

 Transistor-Transistor Logic (TTL) ,
 174 , 187

 Tree of Porphyry , 117
 triode , 35
 tri-state buffer , 131
 tri-state functions , 130 – 2
 tri-state gates , 198 , 198 f , 201
 trit , 85f
 tritium , 12
 TRUE and FALSE functions

 versus OPEN and CLOSED
functions , 50 – 1

 true outputs , 132
 truncation algorithm , 436 , 444 ,

 447 – 8 , 450 – 2
 truth (quarks) , 11 f
TTL (Transistor-Transistor Logic) , 187

 two-quanta digital system , 8
 two’s complement , 91 – 2

 U
 ubiquitous laser beams , 332 – 3
 UDL/I (Unifi ed Design Language for

Integrated Circuits) , 356
 UDSM (Ultra-Deep-Submicron) ,

 189
 ULAs (Uncommitted Logic Arrays) ,

 236 f
 Ultra-Deep-Submicron (UDSM) ,

 189
 Ultra-Large-Scale Integration (ULSI) ,

 188
 Uncommitted Logic Arrays (ULAs) ,

 236 f
 unidirectional , 193
 Unifi ed Design Language for

Integrated Circuits (UDL/I) ,
 356

 unit qualifi ers , 30 – 1
 University of Aberdeen , 21
 University of California, Berkeley ,

 28 , 328 , 346
 University of Illinois , 342
 University of Pennsylvania , 35
 unlucky numbers , 84
 unsigned binary numbers , 87 – 8

 addition , 88 – 9
 subtraction , 91 – 3

 unused states , 158 – 9
 up (quarks) , 11 f
 U.S. Department of Defense (DoD) ,

 356

 V
 vacuum tubes , 35 , 35 f
 valence bonds , 14
 valence electrons , 14
 valves , 35 f
 vapor-phase soldering , 261 , 289 ,

 289 f
 vaporware , 308
 variable resistors , 20 f
 varistors , 20 f
 VDRs , 20 f
 vector , 125
 Venn, John , 117
 Venn diagrams , 117
 Vera® , 358 – 9

Index540

 verifi cation languages , 358–9
 Verilog , 350 , 356
 Verisity , 358
 Very High Speed Integrated Circuit

(VHSIC) program , 356
 Very-Large Scale Integration (VLSI) ,

 188
 VHDL , 350 , 356
 VHSIC (Very High Speed Integrated

Circuit) program , 356
 VHS tapes , 161
 VI (Visual Interface) , 363
 vias , 180 , 263 , 263f , 265 , 298

 versus holes , 264–5
 hybrids , 278

 via-screen , 299
 vigesimal (base-20) system , 76
 Visual Interface(VI) , 363
 VLSI (Very-Large Scale Integration) ,

 188
 volatile , 194
 Volta, Count Alessandro , 19f
 voltage , 18–19
 volts , 19 , 19f
 von Neumann machines , 168f
 von Siemens, Ernst Werner , 30
 von Zeppelin, Count Ferdinand , 41 f

 W
 Wafer-Level Chip-Scale Package (WL-

CSP) , 295
 wafer probing , 181

 wafers , 175
 wagon wheel pattern , 269f
 Walter Brattain , 39
 water clock , 72
 water molecule , 14
 water tank representation

 of capacitance , 22
 of voltage, current, and resistance ,

 18 –19
 Watt, James , 19f
 watts , 19 , 19f
 waveforms , 4 , 5 , 6
wave soldering , 259–60
 weasel words , 361
 wells (in multichip modules) , 301 ,

302
 wetware , 308 f
 Wilder, John Tukey , 78
 William of Ockham , 107 f
 Williams, R. Stanley , 28
 William Shockley , 39 , 429
 Winston Churchill , 342
 wire bonding , 287
 wire bonds versus fl ip-chip

technique , 293–4
 word , 79f , 195–6

 X
 X (“don’t know ”) states , 137 , 140 ,

 145
 X Architecture , 180f
 “ X” character , 87 , 123

 Xilinx , 227
 XNOR gate/function , 54 , 54fp , 54–

 562 –3 , 101 , 126
 pass-transistor implementation ,

 63 –5 , 424
 XNORs

 even number of , 391
 odd number of , 392
 Reed-M üller implementations ,

 392
 XOR gate/function , 52fp , 53 , 62–3 ,

 100 –1 , 456–7
 pass-transistor implementation ,

 424
 pass-transistor implementations ,

 63 –5

 Y
 yocto , 31
 yotta , 31

 Z
 Z character , 131
 zepto , 31
 zero

 origin of , 74–5
 zetta , 31
 Zone , 312

	BEBOP TO THE BOOLEAN BOOGIE: AN UNCONVENTIONAL GUIDE TO ELECTRONICS
	COPYRIGHT PAGE
	CONTENTS
	ABOUT THE AUTHOR
	FOREWORD
	ABOUT THIS BOOK
	ACKNOWLEDGMENTS
	SECTION 1 Fundamentals
	CHAPTER 1 Analog Versus Digital
	It Was a Dark and Stormy Night…
	Analog Versus Digital Views of the World
	Multi-Value Digital Systems
	Experiments with Bricks

	CHAPTER 2 Atoms, Molecules, and Crystals
	Protons, Neutrons, and Electrons
	Quantum Levels and Electron Shells
	Making Molecules
	Crystals and Other Structures

	CHAPTER 3 Conductors, Insulators, and Other Stuff
	Conductors and Insulators
	Voltage, Current, and Resistance
	Resistance and Resistors
	Capacitance and Capacitors
	Inductance and Inductors
	Memristance and Memristors
	Impedance and Reactance
	Admittance, Conductance, and Susceptance
	Unit Qualifiers

	CHAPTER 4 Semiconductors (Diodes and Transistors)
	Herding Wild Electrons
	The Electromechanical Relay
	The First Vacuum Tubes
	Semiconductors
	Semiconductor Diodes
	Bipolar Junction Transistors (BJTs)
	Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs)
	The Transistor as a Switch
	Gallium Arsenide Semiconductors
	Light-Emitting Diodes (LEDs)
	Organic LEDs (OLEDs)
	Active Versus Passive and Electric Versus Electronic

	CHAPTER 5 Primitive Logic Functions
	Switch Representations of AND and OR Functions
	FALSE and TRUE Versus OPEN and CLOSED
	BUF and NOT Functions
	"Connect the NOTs"
	AND, OR, and XOR Functions
	NAND, NOR, and XNOR Functions
	Not a Lot
	Functions Versus Gates

	CHAPTER 6 Using Transistors to Build Logic Gates
	NMOS, PMOS, and CMOS
	Using 0s and 1s Instead of Fs and Ts
	NOT and BUF Gates
	NAND and AND Gates
	NOR and OR Gates
	XNOR and XOR Gates
	XNOR and XOR Gates: Pass-Transistor Implementations
	Pass-Transistor Logic

	CHAPTER 7 Alternative Number Systems
	Fingers, Toes, and Pebbles
	Bones with Notches
	Tally Sticks: The Hidden Dangers
	The Abacus
	Roman Numerals
	Decimal (Base-10)
	Duo-Decimal (Base-12)
	Sexagesimal (Base-60)
	The Concepts of Zero and Negative Numbers
	Vigesimal (Base-20)
	Jobs Abound for Time-Travelers
	Quinary (Base Five)
	Binary (Base-2)
	Octal (Base-8) and Hexadecimal (Base-16)
	Way Back in the Mists of Time
	Representing Numbers Using Powers
	Lucky and Unlucky Numbers
	Tertiary Logic

	CHAPTER 8 Binary Arithmetic
	Before We Start…
	Unsigned Binary Numbers
	Adding Unsigned Binary Numbers
	Nines' and Ten's Complements
	Subtracting Unsigned Binary Numbers
	Sign-Magnitude Binary Numbers
	Signed Binary Numbers
	Adding Signed Binary Numbers
	Subtracting Signed Binary Numbers
	Binary Multiplication
	Binary Division

	CHAPTER 9 Boolean Algebra
	Cabbages, Parrots, and Buckets of Burning Oil
	Primitive Logic Functions
	Combining a Single Variable with Logic 0 or Logic 1
	The Idempotent Rules
	The Complementary Rules
	The Involution Rule
	The Commutative Rules
	The Associative Rules
	Precedence of Operators
	The First Distributive Rule
	The Second Distributive Rule
	The Simplification Rules
	DeMorgan Transformations
	Minterms and Maxterms
	Sum-of-Products and Product-of-Sums
	Canonical Forms
	An Interesting Conundrum

	CHAPTER 10 Karnaugh Maps
	The Tree of Porphyry
	John Venn and his Venn Diagrams
	Allan Marquand and Lewis Carroll
	Maurice Karnaugh and Karnaugh Maps
	Minimization Using Karnaugh Maps
	Grouping Minterms
	Incompletely Specified Functions
	Populating Maps Using 0s Versus 1s

	CHAPTER 11 Slightly More Complex Functions
	First Gather a Bucket of Logic Gates
	Scalar Versus Vector Notation
	Equality Comparators
	Multiplexers
	Decoders
	Tri-State Functions
	Combinational Versus Sequential Functions
	RS Latch (NOR Implementation)
	RS Latch (NAND Implementation)
	D-Type Latches
	D-Type Flip-flops
	Implementing a D-Type Flip-flop
	JK and T Flip-flops
	Shift Registers
	Counters
	Setup and Hold Times
	Brick by Brick

	CHAPTER 12 State Machines
	"Is That a Gizmo in Your Pocket, Or…"
	State Diagrams
	State Tables
	State Machines
	State Assignment
	Don't Care States, Unused States, and Latch-Up Conditions

	CHAPTER 13 Analog-to-Digital and Vice Versa
	Setting the Scene
	Analog-to-Digital
	Digital-to-Analog
	DSP Versus DSP
	Analog Signal Processing (ASP)
	Digital Signal Processing (DSP)
	DSP Examples
	What Implements the Digital Signal Processing?

	SECTION 2 Components and Processes
	CHAPTER 14 Integrated Circuits (ICs)
	The First Integrated Circuits
	An Overview of the Fabrication Process
	A Slightly More Detailed Look at the Fabrication Process
	An Introduction to the Packaging Process
	Integrated Circuits Versus Discrete Components
	Different Types of ICs
	TTL, ECL, and CMOS
	Core Supply Voltages
	Equivalent Gates
	Device Geometries
	What Comes After Optical Lithography?
	How Many Transistors?
	Moore's Law

	CHAPTER 15 Memory ICs
	RAMs and ROMs
	Cells, Words, and Arrays
	Addressing a Word in Memory
	Kilo, Mega, Giga, Tera, Etc.
	Bits and Bytes
	ROM Control Decoding
	RAM with Separate Data In and Data Out Busses
	RAM with Single Bidirectional Bus
	Increasing Width and Depth
	Mask-Programmed ROMs
	PROMs
	EPROMs
	EEPROMs/E[sup(2)]PROMs
	FLASH
	SRAMs and DRAMs
	SDRAMs
	DDR, DDR2, DDR3, QDR, RAMBUS, Etc.
	SIMMs, DIMMs, and RIMMs
	ECC Memory
	MRAMs
	nvRAMs, FRAMs, PRAMs, RRAMs, CBRAMs, SONOS, Etc.

	CHAPTER 16 Programmable ICs
	A Simple Programmable Function
	Fusible-Link Technologies
	Antifuse Technologies
	EPROM, E[sup(2)]PROM, FLASH, and SRAM Technologies
	The First Programmable Logic Devices (PLDs)
	PROMs
	PLAs
	PALs and GALs
	Additional Programmable Options
	Introducing CPLDs
	Introducing FPGAs
	Alternative FPGA Architectures
	Alternative FPGA Configuration Technologies
	Mixed-Signal FPGAs, CSSPs, and…
	Summary

	CHAPTER 17 Application-Specific Integrated Circuits (ASICs)
	Introducing ASICs
	Full Custom Devices
	Gate Arrays
	High-Level View of the Gate Array Design Flow
	Standard Cell Devices
	High-Level View of the Standard Cell Design Flow
	1T Versus 6T SRAM
	Structured ASICs
	Input/Output (I/O) Cells and Pads
	ASICs Versus ASSPs
	Who Are All the Players?
	Summary

	CHAPTER 18 Printed Circuit Boards (PCBs)
	Not Much Fun
	The First Circuit Boards
	PCBs and PWBs
	RoHS and Lead-Free Solder
	Subtractive Processes
	Additive Processes
	Single-Sided Boards
	Lead Through-Hole (LTH)
	Wave Soldering
	Surface Mount Technology (SMT)
	Double-Sided Boards
	Holes Versus Vias
	Multilayer Boards
	Through-Hole, Blind, and Buried Vias
	Power and Ground Planes
	High Density Interconnect (HDI) and Microvia Technologies
	Backplanes and Motherboards
	Conductive Ink Technology
	Chip-on-Board (COB)
	Flexible Printed Circuits (FPCs)

	CHAPTER 19 Hybrids
	The Offspring Resulting from Crossbreeding
	Hybrid Substrates
	The Thick-Film Process
	Creating Tracks
	Creating Resistors
	Laser Trimming
	Creating Capacitors and Inductors
	Double-sided Thick-Film Hybrids
	Subtractive Thick-Film Technology

	The Thin-Film Process
	Laser Trimming

	The Assembly Process
	Attaching the Die
	Wire Bonds
	Tape-Automated Bonding
	Flipped-Chip Techniques
	Advantages of Using Bare Die

	The Packaging Process

	CHAPTER 20 Advanced Packaging Techniques
	Sliding Down the Rabbit Hole
	Wire Bonds Versus Flip-Chip
	Wire Bonding and Flip-Chip
	Chip-Scale Package (CSP) Technology
	3-D Die Stacking
	System-in-Package (SiP), PiP, and PoP
	A Positive Plethora of Substrates
	An Example SiP Based on Cofired Ceramics
	Low-Fired Cofired Ceramics
	Assembly and Packaging
	Pin Grid Arrays
	Pad, Ball, and Column Grid Arrays
	Fuzz-Buttons
	Populating the Die

	The Mind Boggles

	CHAPTER 21 Alternative and Future Technologies
	A Smorgasbord of Technologies
	Reconfigurable Computing
	Elemental Computing Arrays (ECAs)
	Optical Interconnect
	Fiber-Optic Interconnect
	It Pays to Keep Your Eyes Open
	Free-Space Interconnect
	Guided-Wave Interconnect

	Optical Memories
	Protein Switches and Memories
	Electromagnetic Transistor Fabrication
	Heterojunction Transistors
	Buckyballs and Nanotubes
	Diamond Substrates
	Chemical Vapor Deposition
	Chemical Vapor Infiltration
	Ubiquitous Laser Beams
	The Maverick Inventor
	The Requirement for Single-Crystal Diamond

	Conductive Adhesives
	Superconductors
	Nanotechnology
	Back to the Water Molecule
	Imagine a Soup

	Once Again, the Mind Boggles
	Summary

	SECTION 3 Design Tools and Stuff
	CHAPTER 22 General Concepts
	Stuff, More Stuff, and Yet More Stuff
	The Origins of EDA
	Computer-Aided Design (CAD)
	Computer-Aided Engineering (CAE)
	Designers Versus Engineers
	Electronic Design Automation (EDA)

	Automation
	Embedded Systems
	Programming Versus Hardware Design Languages
	Netlists
	Transistor-Level
	Gate-Level
	Component-Level

	Different Levels of Abstraction
	Transistor-Level
	Switch-Level
	Gate-Level
	Structural
	Functional (Boolean, RTL)
	Behavioral
	Algorithmic

	Different Languages
	Programming Languages
	Scripting Languages
	Hardware Description Languages (Digital)
	Hardware Description Languages (Analog)
	Verification Languages (General)
	Verification Languages (Formal)

	Electronic System Level (ESL)

	CHAPTER 23 Design and Verification Tools
	Weasel Words
	Design Capture
	Transistor-Level and Gate-Level Netlists
	Schematic Capture
	Higher Levels of Abstraction
	Graphical Design Entry Lives On

	Functional Verification (Simulation)
	Formal Verification
	Logic Synthesis
	Layout (Place-and-Route)
	Parasitic Extraction
	Timing Analysis
	Static Timing Analysis (STA)
	Statistical Static Timing Analysis (SSTA)

	Design for Manufacturability (DFT)
	And So Much More…
	Schematic Synthesis
	Analog Synthesis
	RF/Microwave Design Tools
	Hardware Simulation Acceleration and Emulation
	Mixed-Signal Simulation
	Physical Verification (DRC, ERC, LVS)
	Signal Integrity (SI) Analysis
	Thermal Analysis
	Power Analysis
	Electromagnetic Interference and Compliance (EMI and EMC)
	SCAN, BIST, JTAG, etc.
	Automatic Test Pattern Generation (ATPG)
	Fault Simulation

	Turn That Frown Upside Down

	APPENDIX A. Assertion-Level Logic
	APPENDIX B. Positive Versus Negative Logic
	APPENDIX C. Reed-Müller Logic
	APPENDIX D. Gray Codes
	APPENDIX E. Linear Feedback Shift Registers (LFSRs)
	APPENDIX F. Pass-Transistor Logic
	APPENDIX G. More on Semiconductors
	APPENDIX H. Rounding Algorithms 101
	APPENDIX I. An Interesting Conundrum
	APPENDIX J. A No-Holds Barred Seafood Gumbo
	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

